MicroRNA expression profiling in tears and blood as predictive biomarkers for anti-VEGF treatment response in wet age-related macular degeneration

Li JQ, Welchowski T, Schmid M et al (2020) Prevalence and incidence of age-related macular degeneration in Europe: a systematic review and meta-analysis. Br J Ophthalmol 104(8):1077–1084. https://doi.org/10.1136/bjophthalmol-2019-314422

Article  PubMed  Google Scholar 

Colijn JM, Buitendijk GHS, Prokofyeva E et al (2017) Prevalence of age-related macular degeneration in Europe: the past and the future. Ophthalmology 124(12):1753–1763. https://doi.org/10.1016/j.ophtha.2017.05.035

Article  PubMed  Google Scholar 

Veritti D, Sarao V, Lanzetta P (2012) Neovascular age-related macular degeneration. Ophthalmologica 227(Suppl 1):11–20. https://doi.org/10.1159/000337154

Article  CAS  PubMed  Google Scholar 

Saxena N, George PP, Hoon HB et al (2016) The burden of wet age-related macular degeneration and its economic implications in singapore in the Year 2030. Ophthalmic Epidemiol 23(4):232–237. https://doi.org/10.1080/09286586.2016.1193617

Article  PubMed  Google Scholar 

Solomon SD, Lindsley K, Vedula SS et al (2014) Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 8(8):CD005139. https://doi.org/10.1002/14651858

Article  CAS  PubMed  Google Scholar 

CATT Research Group, Martin DF, Maguire MG, Ying GS et al (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 364(20):1897–908. https://doi.org/10.1056/NEJMoa1102673

Article  Google Scholar 

Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, Fine SL et al (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 119(7):1388–98. https://doi.org/10.1016/j.ophtha.2012.03.053

Article  Google Scholar 

Mettu PS, Allingham MJ, Cousins SW (2021) Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res 82:100906. https://doi.org/10.1016/j.preteyeres.2020.100906

Article  CAS  PubMed  Google Scholar 

Amoaku WM, Chakravarthy U, Gale R et al (2015) Defining response to anti-VEGF therapies in neovascular AMD. Eye (Lond) 29(6):721–731. https://doi.org/10.1038/eye.2015.48

Article  CAS  PubMed  Google Scholar 

Barış ME, Menteş J, Afrashi F et al (2020) Subgroups and features of poor responders to anti-vascular endothelial growth factor treatment in eyes with neovascular age-related macular degeneration. Turk J Ophthalmol 50(5):275–282. https://doi.org/10.4274/tjo.galenos.2020.38488

Article  PubMed  PubMed Central  Google Scholar 

Saliminejad K, Khorram Khorshid HR, Soleymani Fard S et al (2019) An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465. https://doi.org/10.1002/jcp.27486

Article  CAS  PubMed  Google Scholar 

Hyttinen JMT, Blasiak J, Felszeghy S et al (2021) MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev 67:101260. https://doi.org/10.1016/j.arr.2021.101260

Article  CAS  PubMed  Google Scholar 

Romano GL, Platania CBM, Drago F et al (2017) Retinal and circulating miRNAs in age-related macular degeneration: An In vivo Animal and human study. Front Pharmacol 8:168. https://doi.org/10.3389/fphar.2017.00168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu-Tan JA, Rutar M, Saxena K et al (2018) MicroRNA-124 dysregulation is associated with retinal inflammation and photoreceptor death in the degenerating retina. Invest Ophthalmol Vis Sci 59(10):4094–4105. https://doi.org/10.1167/iovs.18-24623

Article  CAS  PubMed  Google Scholar 

Blasiak J, Watala C, Tuuminen R et al (2019) Expression of VEGFA-regulating miRNAs and mortality in wet AMD. J Cell Mol Med 23(12):8464–8471. https://doi.org/10.1111/jcmm.14731

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, Liu X, Zuo Z (2021) Regulatory role of miRNA-23a in diabetic retinopathy. Exp Ther Med 22(6):1477. https://doi.org/10.3892/etm.2021.10912

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YJ, Yeon Y, Lee WJ et al (2019) Comparison of MicroRNA expression in tears of normal subjects and Sjögren syndrome patients. Invest Ophthalmol Vis Sci 60(14):4889–4895. https://doi.org/10.1167/iovs.19-27062

Article  PubMed  Google Scholar 

Raga-Cervera J, Bolarin JM, Millan JM et al (2021) miRNAs and Genes Involved in the Interplay between ocular hypertension and primary open-angle glaucoma oxidative stress, inflammation, and apoptosis networks. J Clin Med. 10(11):2227. https://doi.org/10.3390/jcm10112227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Xie X, Li H et al (2020) Discovery of microRNA expression profiles involved in regulating TGF-β2 expression in the tears of dry eye patients. Ann Clin Biochem 57(6):420–428. https://doi.org/10.1177/0004563220961746

Article  CAS  PubMed  Google Scholar 

Kim YJ, Yeon Y, Lee WJ et al (2022) Analysis of MicroRNA expression in tears of patients with herpes epithelial keratitis: a preliminary study. Invest Ophthalmol Vis Sci 63(4):21. https://doi.org/10.1167/iovs.63.4.21

Article  CAS  PubMed  PubMed Central  Google Scholar 

Syed NH, Shahidan WNS, Shatriah I et al (2022) MicroRNA profiling of the tears of children with vernal keratoconjunctivitis. Front Genet 13:847168. https://doi.org/10.3389/fgene.2022.847168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grieco GE, Sebastiani G, Eandi CM et al (2020) MicroRNA expression in the aqueous humor of patients with diabetic macular Edema. Int J Mol Sci 21(19):7328. https://doi.org/10.3390/ijms21197328

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng K, Wang N, Shen Y et al (2018) Pro-apoptotic effects of micro-ribonucleic acid-365 on retinal neurons by targeting insulin-like growth factor-1 in diabetic rats: An in vivo and in vitro study. J Diabetes Investig 9(5):1041–1051. https://doi.org/10.1111/jdi.12815

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Zhang J, Chen X et al (2018) miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress. Exp Eye Res 168:89–99. https://doi.org/10.1016/j.exer.2017.11.006

Article  CAS  PubMed  Google Scholar 

Wang H, Wang Z, Tang Q (2018) Reduced expression of microRNA-199a-3p is associated with vascular endothelial cell injury induced by type 2 diabetes mellitus. Exp Ther Med 16(4):3639–3645. https://doi.org/10.3892/etm.2018.6655

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren C, Liu Q, Wei Q et al (2017) Circulating miRNAs as potential biomarkers of age-related macular degeneration. Cell Physiol Biochem 41(4):1413–1423. https://doi.org/10.1159/000467941

Article  CAS  PubMed  Google Scholar 

Wu J, Chen J, Hu J et al (2023) CircRNA Uxs1/miR-335-5p/PGF axis regulates choroidal neovascularization via the mTOR/p70 S6k pathway. Transl Res 256:41–55. https://doi.org/10.1016/j.trsl.2023.01.003

Article  CAS  PubMed  Google Scholar 

Friedrich J, Steel DHW, Schlingemann RO et al (2023) microRNA expression profile in the vitreous of proliferative diabetic retinopathy patients and differences from patients treated with Anti-VEGF therapy. Transl Vis Sci Technol 9(6):16. https://doi.org/10.1167/tvst.9.6.16

Comments (0)

No login
gif