Two novel in vitro assays to screen chemicals for their capacity to inhibit thyroid hormone transmembrane transporter proteins OATP1C1 and OAT4

Admati I, Wasserman-Bartov T, Tovin A, Rozenblat R, Blitz E, Zada D, Lerer-Goldshtein T, Appelbaum L (2020) Neural alterations and hyperactivity of the hypothalamic–pituitary–thyroid axis in oatp1c1 deficiency. Thyroid 30:161–174. https://doi.org/10.1089/thy.2019.0320

Article  CAS  PubMed  Google Scholar 

Bakos É, Német O, Patik I, Kucsma N, Várady G, Szakács G, Özvegy-Laczka C (2020) A novel fluorescence-based functional assay for human OATP1A2 and OATP1C1 identifies interaction between third-generation P-gp inhibitors and OATP1A2. FEBS J 287(12):2468–2485. https://doi.org/10.1111/febs.15156

Article  CAS  PubMed  Google Scholar 

Beard AP, Bartlewski PM, Chandolia RK, Honaramooz A, Rawlings NC (1999) Reproductive and endocrine function in rams exposed to the organochlorine pesticides lindane and pentachlorophenol from conception. Reproduction 115(2):303–314. https://doi.org/10.1530/jrf.0.1150303

Article  CAS  Google Scholar 

Buckalew AR, Wang J, Murr AS, Deisenroth C, Stewart WM, Stoker TE, Laws SC (2020) Evaluation of potential sodium-iodide symporter (NIS) inhibitors using a secondary Fischer rat thyroid follicular cell (FRTL-5) radioactive iodide uptake (RAIU) assay. Arch Toxicol 94(3):873–885. https://doi.org/10.1007/s00204-020-02664-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim K, Sugiyama Y, Kanai Y, Endou H (2000) Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta*. J Biol Chem 275:4507–4512. https://doi.org/10.1074/jbc.275.6.4507

Article  CAS  PubMed  Google Scholar 

Chan S, Kilby MD (2000) Thyroid hormone and central nervous system development. J Endocrinol 165:1–8. https://doi.org/10.1677/joe.0.1650001

Article  CAS  PubMed  Google Scholar 

Chen Z, Meima ME, Peeters RP, Visser WE (2022a) Thyroid hormone transporters in pregnancy and fetal development. Int J Mol Sci 23(23):15113. https://doi.org/10.3390/ijms232315113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, van der Sman ASE, Groeneweg S, de Rooij LJ, Visser WE, Peeters RP, Meima ME (2022b) Thyroid hormone transporters in a human placental cell model. Thyroid. https://doi.org/10.1089/thy.2021.0503

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Peeters RP, Flach W, de Rooij LJ, Yildiz S, Teumer A, Nauck M, Sterenborg RBTM, Rutten JHW, Medici M, Edward Visser W, Meima ME (2023) Novel (sulfated) thyroid hormone transporters in the solute carrier 22 family. Eur Thyr J. https://doi.org/10.1530/ETJ-23-0023

Article  Google Scholar 

Cope RB, Kacew S, Dourson M (2015) A reproductive, developmental and neurobehavioral study following oral exposure of tetrabromobisphenol A on Sprague-Dawley rats. Toxicology 329:49–59. https://doi.org/10.1016/j.tox.2014.12.013

Article  CAS  PubMed  Google Scholar 

De Angelis M, Maity-Kumar G, Schriever SC, Kozlova EV, Müller TD, Pfluger PT, Curras-Collazo MC, Schramm KW (2022) Development and validation of an LC-MS/MS methodology for the quantification of thyroid hormones in dko MCT8/OATP1C1 mouse brain. J Pharma Biomed Anal 221:115038. https://doi.org/10.1016/j.jpba.2022.115038

Article  CAS  Google Scholar 

Dong M, Li Y, Zhu M, Qin Z (2021) Tetrabromobisphenol A: a neurotoxicant or not? Environ Sci Pollut Res 28:54466–54476. https://doi.org/10.1007/s11356-021-15166-w/Published

Article  CAS  Google Scholar 

Dratman MB, Crutchfield FL, Schoenhoff MB (1991) Transport of iodothyronines from bloodstream to brain: contributions by blood:brain and choroid plexus:cerebrospinal fluid barriers. Brain Res 554:229–236. https://doi.org/10.1016/0006-8993(91)90194-z

Article  CAS  PubMed  Google Scholar 

Feiteiro J, Mariana M, Cairrão E (2021) Health toxicity effects of brominated flame retardants: from environmental to human exposure. In Environ Pollut 285:117475. https://doi.org/10.1016/j.envpol.2021.117475

Article  CAS  Google Scholar 

Ford J, Riutta C, Kosian PA, O’Shaughessy K, Gilbert M (2023) Reducing uncertainties in quantitative adverse outcome pathways by analysis of thyroid hormone in the neonatal rat brain. Toxicol Sci 193(2):192–203. https://doi.org/10.1093/toxsci/kfad040

Article  CAS  PubMed  Google Scholar 

Friedman KP, Watt ED, Hornung MW, Hedge JM, Judson RS, Crofton KM, Houck KA, Simmons SO (2016) Tiered high-throughput screening approach to identify thyroperoxidase inhibitors within the toxcast phase I and II chemical libraries. Toxicol Sci 151(1):160–180. https://doi.org/10.1093/toxsci/kfw034

Article  CAS  Google Scholar 

Funkquist A, Bengtsson A, Johansson PM, Svensson J, Bjellerup P, Blennow K, Wandt B, Sjöberg S (2020) Low CSF/serum ratio of free T4 is associated with decreased quality of life in mild hypothyroidism—a pilot study: CSF/s-T4 associated with QoL in hypothyroidism. J Clin Transl Endocrinol. https://doi.org/10.1016/j.jcte.2020.100218

Article  PubMed  PubMed Central  Google Scholar 

Gilbert ME, O’Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss MG, Hassan I, Ford JL (2021) Thyroid disruptors: extrathyroidal sites of chemical action and neurodevelopmental outcome-an examination using triclosan and perfluorohexane sulfonate. Toxicol Sci 183(1):195–213. https://doi.org/10.1093/toxsci/kfab080

Article  CAS  PubMed  Google Scholar 

Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MHA, Andersson PL, Legler J, Brouwer A (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci 92(1):157–173. https://doi.org/10.1093/toxsci/kfj187

Article  CAS  PubMed  Google Scholar 

Hu W, Zhang MY, Liu LY, Zhang ZF, Guo Y (2023) Perfluoroalkyl and polyfluoroalkyl substances (PFASs) crossing the blood-cerebrospinal fluid barrier: their occurrence in human cerebrospinal fluid. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2022.130003

Article  PubMed  Google Scholar 

Ibrahim KA, El-Desouky MA, Abou-Yousef HM, Gabrowny KH, El-Sayed ASM (2015) Imidacloprid and/or esfenvalerate induce apoptosis and disrupt thyroid hormones in neonatal rats. Glob J Biotechnol Biochem 10:106–112. https://doi.org/10.5829/idosi.gjbb.2015.10.03.1121

Article  CAS  Google Scholar 

Jayarama-Naidu R, Johannes J, Meyer F, Wirth EK, Schomburg L, Köhrle J, Renko K (2015) A nonradioactive uptake assay for rapid analysis of thyroid hormone transporter function. Endocrinology 156(7):2739–2745. https://doi.org/10.1210/en.2015-1016

Article  CAS  PubMed  Google Scholar 

Johannes J, Jayarama-Naidu R, Meyer F, Wirth EK, Schweizer U, Schomburg L, Köhrle J, Renko K (2016) Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology 157(4):1694–1701. https://doi.org/10.1210/en.2015-1933

Article  CAS  PubMed  Google Scholar 

Kacew S, Hayes AW (2020) Absence of neurotoxicity and lack of neurobehavioral consequences due to exposure to tetrabromobisphenol A (TBBPA) exposure in humans, animals and zebrafish. Arch Toxicol 94(1):59–66. https://doi.org/10.1007/s00204-019-02627-y

Article  CAS  PubMed  Google Scholar 

Kiciński M, Viaene MK, Den Hond E, Schoeters G, Covaci A, Dirtu AC, Nelen V, Bruckers L, Croes K, Sioen I, Baeyens W, Van Larebeke N, Nawrot TS (2012) Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: a cross-sectional study. Environ Health: Glob Access Sci Source. https://doi.org/10.1186/1476-069X-11-86

Article  Google Scholar 

Korevaar TIM, Tiemeier H, Peeters RP (2018) Clinical associations of maternal thyroid function with foetal brain development: epidemiological interpretation and overview of available evidence. Clin Endocrinol 89(2):129–138. https://doi.org/10.1111/cen.13724

Article  Google Scholar 

Krebs A, Nyffeler J, Rahnenführer J, Leist M (2018) Normalization of data for viability and relative cell function curves. ALTEX. https://doi.org/10.14573/altex.1803231

Article  PubMed  Google Scholar 

Kummu M, Sieppi E, Koponen J, Laatio L, Vähäkangas K, Kiviranta H, Rautio A, Myllynen P (2015) Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system. Placenta 36(10):1185–1191. https://doi.org/10.1016/j.placenta.2015.07.119

Article  CAS  PubMed 

Comments (0)

No login
gif