A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure

Ahn B, Sakakibara Y, Paulev P-E, Masuda A, Nishibayashi Y, Nakamura W, Honda Y (1989) Circulatory and respiratory responses to lower body negative pressure in man. Jpn J Physiol 39(6):919–929. https://doi.org/10.2170/jjphysiol.39.919

Article  CAS  PubMed  Google Scholar 

Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO 2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiology-Regulatory Integr Comp Physiol 296(5):R1473–R1495. https://doi.org/10.1152/ajpregu.91008.2008

Article  CAS  Google Scholar 

Akselrod S, Barak Y, Ben-Dov Y, Keselbrener L, Baharav A (2001) Estimation of autonomic response based on individually determined time axis. Auton Neurosci 90(1–2):13–23. https://doi.org/10.1016/S1566-0702(01)00262-4

Article  CAS  PubMed  Google Scholar 

Balldin UI, Krock LP, Hopper NL, Squires WG (1996) Cerebral artery blood flow velocity changes folliwng rapid release of lower body negative pressure. Aviat Space Environ Med 67(1):19–22. https://doi.org/

CAS  PubMed  Google Scholar 

Barella LA, Etnier JL, Chang Y-K (2010) The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults. J Aging Phys Act 18(1):87–98. https://doi.org/10.1123/japa.18.1.87

Article  PubMed  Google Scholar 

Bennett T (1987) Cardiovascular responses to central hypovolaemia in man: physiology and pathophysiology. Physiologist 30(1 Suppl):143–146

CAS  Google Scholar 

Bishop CC, Powell S, Rutt D, Browse NL (1986) Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke 17(5):913–915. https://doi.org/10.1161/01.STR.17.5.913

Article  CAS  PubMed  Google Scholar 

Blomqvist CG, Stone HL (1991) Cardiovascular Adjustments to Gravitational Stress. https://ntrs.nasa.gov/citations/19910016260

Carey DP, Hargreaves EL, Goodale MA (1996) Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control. Exp Brain Res 112(3):496–504. https://doi.org/10.1007/BF00227955

Chang YK, Labban JD, Gapin JI, Etnier JL (2012) The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res 1453:87–101. https://doi.org/10.1016/j.brainres.2012.02.068

Article  CAS  PubMed  Google Scholar 

Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci 101(9):3316–3321. https://doi.org/10.1073/pnas.0400266101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Connolly JD, Goodale MA, Desouza JFX, Menon RS, Vilis T, The Medical Research Council Group for Action and Perception (2000) A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J Neurophysiol 84(3):1645–1655. https://doi.org/10.1152/jn.2000.84.3.1645

Article  CAS  PubMed  Google Scholar 

Crystal GJ, Salem MR (2015) Lower body negative pressure: historical perspective, research findings, and clinical applications. J Anesth Hist 1(2):49–54. https://doi.org/10.1016/j.janh.2015.02.005

Article  PubMed  Google Scholar 

Diamond A (2013) Executive functions. Ann Rev Psychol 64(1):135–168. https://doi.org/10.1146/annurev-psych-113011-143750

Article  Google Scholar 

Duracher JJ, Carter JR, Cooke WH, Young HH, Harwood MH (2015) Cerebral blood flow velocity during combined lower body negative pressure and cognitive stress. Aerosp Med Hum Perform 86(8):688–692. https://doi.org/10.3357/AMHP.4239.2015

Article  Google Scholar 

Edelman JA, Goldberg ME (2001) Dependence of saccade-related activity in the primate superior colliculus on visual target presence. J Neurophysiol 86(2):67–691. https://doi.org/10.1152/jn.2001.86.2.676

Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Soc Psychol Gen 47:381–391.

Frey MA, Hoffler GW (1988) Association of sex and age with responses to lower-body negative pressure. J Appl Physiol 65(4):1752–1756. https://doi.org/10.1152/jappl.1988.65.4.1752

Article  CAS  PubMed  Google Scholar 

Goswami N (2023) Compensatory hemodynamic changes in response to central hypovolemia in humans: lower body negative pressure: updates and perspectives. J Muscle Res Cell Motil 44(2):89–94. https://doi.org/10.1007/s10974-022-09635-z

Article  PubMed  Google Scholar 

Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA (2019) Lower body negative pressure: physiological effects, applications, and implementation. Physiol Rev 99(1):807–851. https://doi.org/10.1152/physrev.00006.2018

Article  CAS  PubMed  Google Scholar 

Guo H, Tierney N, Schaller F, Raven PB, Smith SA, Shi X (2006) Cerebral autoregulation is preserved during orthostatic stress superimposed with systemic hypotension. J Appl Physiol 100(6):1785–1792. https://doi.org/10.1152/japplphysiol.00690.2005

Article  PubMed  Google Scholar 

Han W-Q, Hu W-D, Dong M-Q, Fu Z-J, Wen Z-H, Cheng H-W, Ma J, Ma R-S (2009) Cerebral hemodynamics and brain functional activity during lower body negative pressure. 80(8):5

Heath M, Bell J, Holroyd CB, Krigolson O (2012) Electroencephalographic evidence of vector inversion in antipointing. Exp Brain Res 221(1):19–26. https://doi.org/10.1007/s00221-012-3141-5

Heath M, Maraj A, Maddigan M, Binsted G (2009). The antipointing task: vector inversion is supported by a perceptual estimate of visual space. J Mot Behav 41(5):383–392. https://doi.org/10.3200/35-08-016

Heath M, Petrella A, Blazevic J, Lim D, Pelletier A, Belfry GR (2018) A post-exercise facilitation of executive function is independent of aerobically supported metabolic costs. Neuropsychologia 120:65–74. https://doi.org/10.1016/j.neuropsychologia.2018.10.002

Article  PubMed  Google Scholar 

JASP Team (2024) JASP (Version 0.18.3)[Computer software]

Jeffreys H (1981) Theory of probability (3rd ed.). Oxford, UK: Oxford University Press

Jefferson AL, Poppas A, Paul RH, Cohen RA (2007) Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients. Neurobiol Aging. 28(3):477–483. https://doi.org/10.1016/j.neurobiolaging.2006.01.001. Epub 2006 Feb 15. PMID: 16469418; PMCID: PMC2741683.

Kleinloog JPD, Mensink RP, Ivanov D, Adam JJ, Uludağ K, Joris PJ (2019) Aerobic exercise training improves cerebral blood flow and executive function: a randomized, controlled cross-over trial in sedentary older men. Front Aging Neurosci 11. https://doi.org/10.3389/fnagi.2019.00333

Lakens D, Scheel AM, Isager PM (2018) Equivalence testing for psychological research: a tutorial. Adv Methods Practices Psychol Sci 1(2):259–269. https://doi.org/10.1177/2515245918770963

Article  Google Scholar 

Lewis NCS, Bain AR, MacLeod DB, Wildfong KW, Smith KJ, Willie CK, Sanders ML, Numan T, Morrison SA, Foster GE, Stewart JM, Ainslie PN (2014) Impact of hypocapnia and cerebral perfusion on orthostatic tolerance. J Physiol 592(23):5203–5219. https://doi.org/10.1113/jphysiol.2014.280586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Pühse U (2016) Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology 53(11):1611–1626. https://doi.org/10.1111/psyp.12736

Article  PubMed  Google Scholar 

Maraj A, Heath M (2010) Antipointing: perception-based visual information renders an offline mode of control. Exp Brain Res 202(1):55–64. https://doi.org/10.1007/s00221-009-2111-z

Article  PubMed  Google Scholar 

McHenry LC, Fazekas JF, Sullivan JF (1961) Cerebral hemodynamics of syncope. Am J Med Sci 241:173–178. https://doi.org/10.1097/00000441-196102000-00004. PMID: 13773997

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex frontal lobe tasks: a latent variable analysis. Cogn Psychol 41(1):49–100. https://doi.org/10.1006/cogp.1999.0734

Article  CAS  PubMed  Google Scholar 

Moore CI, Cao R (2008) The hemo-neural hypothesis: on the role of blood flow in information processing. J Neurophysiol 99(5):2035–2047. https://doi.org/10.1152/jn.01366.2006

Article  PubMed  Google Scholar 

Munoz DP, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci 5(3):218–228. https://doi.org/10.1038/nrn1345

Article  CAS  PubMed  Google Scholar 

Norling AM, Marshall RS, Pavol MA, Howard G, Howard V, Liebeskind D, Huston J, Lal BK, Brott TG, Lazar RM (2019) Is Hemispheric hypoperfusion a treatable cause of cognitive impairment? Curr Cardiol Rep 21(1):4. https://doi.org/10.1007/s11886-019-1089-9

Article  PubMed  PubMed Central  Google Scholar 

Ogoh S, Tsukamoto H, Hirasawa A, Hasegawa H, Hirose N, Hashimoto T (2014) The effect of changes in cerebral blood flow on cognitive function during exercise. Physiological Rep 2(9):e12163. https://doi.org/10.14814/phy2.12163

Article  Google Scholar 

Paiva Prudente T, Oliva HNP, Oliva IO, Mezaiko E, Monteiro-Junior RS (2023) Effects of physical exercise on cerebral blood velocity in older adults: a systematic review and meta-analysis. Behav Sci 13(10). https://doi.org/10.3390/bs13100847. Article 10

Poels MM, Ikram MA, Vernooij MW, Krestin GP, Hofman A, Messen WJ, van der Lugt A, Breteler MM (2008) Total cerebral bloo

Comments (0)

No login
gif