HD-tDCS to the lateral occipital complex improves haptic object recognition

Alam M, Truong DQ, Khadka N, Bikson M (2016) Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol 61(12):4506–4521. https://doi.org/10.1088/0031-9155/61/12/4506

Article  PubMed  Google Scholar 

Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object related activation in the ventral visual pathway. Nat Neurosci 4:324–330. https://doi.org/10.1038/85201

Article  CAS  PubMed  Google Scholar 

Amedi A, Jacobson G, Hendler T, Malach R, Zohary E (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12:1202–1212. https://doi.org/10.1093/cercor/12.11.1202

Article  PubMed  Google Scholar 

Amedi A, von Kriegstein K, van Atteveldt NM et al (2005) Functional imaging of human crossmodal identification and object recognition. Exp Brain Res 166:559–571. https://doi.org/10.1007/s00221-005-2396-5

Article  CAS  PubMed  Google Scholar 

Arif Y, Spooner RK, Heinrichs-Graham E, Wilson TW (2021) High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence. J Physiol 599(24):5451–5463. https://doi.org/10.1113/JP282387

Article  CAS  PubMed  Google Scholar 

Au J, Smith-Peirce RN, Carbone E, Moon A, Evans M, Jonides J, Jaeggi SM (2022) Effects of Multisession Prefrontal Transcranial Direct current stimulation on long-term memory and working memory in older adults. J Cogn Neurosci 34(6):1015–1037. https://doi.org/10.1162/jocn_a_01839

Article  PubMed  PubMed Central  Google Scholar 

Barbieri M, Negrini M, Nitsche MA, Rivolta D (2016) Anodal-tDCS over the human right occipital cortex enhances the perception and memory of both faces and objects. Neuropsychologia 81:238–244. https://doi.org/10.1016/j.neuropsychologia.2015.12.030

Article  PubMed  Google Scholar 

Bartel G, Marko M, Rameses I, Lamm C, Riečanský I (2020) Left Prefrontal Cortex supports the Recognition of Meaningful Patterns in ambiguous stimuli. Front NeuroSci 14:152. https://doi.org/10.3389/fnins.2020.00152

Article  PubMed  PubMed Central  Google Scholar 

Bikson M, Datta A, Rahman A, Scaturro J (2010) Electrode montages for tDCS and weak transcranial electrical stimulation: role of return electrode’s position and size. Clin Neurophysiology: Official J Int Federation Clin Neurophysiol 121(12):1976–1978. https://doi.org/10.1016/j.clinph.2010.05.020

Article  CAS  Google Scholar 

Borckardt JJ, Bikson M, Frohman H, Reeves ST, Datta A, Bansal V, George MS (2012) A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. J Pain 13(2):112–120

Article  PubMed  Google Scholar 

Brückner S, Kammer T (2016) No modulation of visual cortex excitability by Transcranial Direct Current Stimulation. PLoS ONE 11(12):e0167697. https://doi.org/10.1371/journal.pone.0167697

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalrymple KA, Manner MD, Harmelink KA, Teska EP, Elison JT (2018) An examination of recording accuracy and precision from eye tracking data from toddlerhood to adulthood. Front Psychol 9:1–12. https://doi.org/10.3389/fpsyg.2018.00803

Article  Google Scholar 

Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul 2(4):201–207e1. https://doi.org/10.1016/j.brs.2009.03.005

Article  PubMed  PubMed Central  Google Scholar 

Falcone B, Coffman BA, Clark VP, Parasuraman R (2012) Transcranial direct current stimulation augments perceptual sensitivity and 24-hour retention in a complex threat detection task. PLoS ONE 7(4):1–10. https://doi.org/10.1371/journal.pone.0034993

Article  CAS  Google Scholar 

Ferber S, Humphrey GK, Vilis T (2005) Segregation and persistence of form in the lateral occipital complex. Neuropsychologia 43(1):41–51. https://doi.org/10.1016/j.neuropsychologia.2004.06.020

Article  PubMed  Google Scholar 

Fesi JD, Mendola JD (2013) Linking brain to behavior for the visual perception of figures and objects. Vis Neurosci 30(5–6):299–313. https://doi.org/10.1017/S0952523813000266

Article  PubMed  Google Scholar 

Garnett EO, den Ouden DB (2015) Validating a Sham Condition for Use in High Definition Transcranial Direct Current Stimulation. Brain Stimul 8(3):551–554. https://doi.org/10.1016/j.brs.2015.01.399

Article  PubMed  Google Scholar 

Gauthier I, Tarr MJ (1997) Becoming a greeble expert: exploring mechanisms for face recognition. Vision Res 37(12):1673–1682. https://doi.org/10.1016/S0042-6989(96)00286-6

Article  CAS  PubMed  Google Scholar 

Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2(6):568–573. https://doi.org/10.1038/9224

Article  CAS  PubMed  Google Scholar 

Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6(4):316–328. https://doi.org/10.1002/(SICI)1097-0193(1998)6:4<316::AID-HBM9>3.0.CO;2-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grill-Spector K, Kourtzi Z, Kanwisher N (2001) The lateral occipital complex and its role in object recognition. Vision Res 41(10–11):1409–1422. https://doi.org/10.1016/s0042-6989(01)00073-6

Article  CAS  PubMed  Google Scholar 

Jacobson L, Koslowsky M, Lavidor M (2012) tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res 216(1):1–10. https://doi.org/10.1007/s00221-011-2891-9

Article  PubMed  Google Scholar 

James TW, Humphrey GK, Gati JS, Servos P, Menon RS, Goodale MA (2002) Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40(10):1706–1714. https://doi.org/10.1016/S0028-3932(02)00017-9

Article  PubMed  Google Scholar 

James TW, Culham J, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126(Pt 11):2463–2475. https://doi.org/10.1093/brain/awg248

Article  PubMed  Google Scholar 

James TW, Shima DW, Tarr MJ, Gauthier I (2005) Generating complex three-dimensional stimuli (Greebles) for haptic expertise training. Behav Res Methods 37(2):353–358. https://doi.org/10.3758/bf03192703

Article  PubMed  Google Scholar 

Karanian JM, Slotnick SD (2017) False memories for shape activate the lateral occipital complex. Learn Memory (Cold Spring Harbor N Y) 24(10):552–556. https://doi.org/10.1101/lm.045765.117

Article  Google Scholar 

Klatzky RL, Lederman SJ, Reed CL (1987) There’s more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J Exp Psychol Gen 116(4):356–369. https://doi.org/10.1037/0096-3445.116.4.356

Article  Google Scholar 

Lavezzi GD, Galan S, Andersen S, Tomer H, D., Cacciamani L (2022) The effects of tDCS on object perception: a systematic review and meta-analysis. Behav Brain Res 430:113927. https://doi.org/10.1016/j.bbr.2022.113927

Article  PubMed  Google Scholar 

Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cogn Psychol 19(3):342–368. https://doi.org/10.1016/0010-0285(87)90008-9

Article  CAS  PubMed  Google Scholar 

Lederman SJ, Klatzky RL (2009) Haptic perception: a tutorial. Atten Percept Psychophys 71(7):1439–1459. https://doi.org/10.3758/APP.71.7.1439

Article  CA

Comments (0)

No login
gif