Real-time monitoring of intracellular biochemical response in locally stretched single cell by a nanosensor

Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7(4):265–75. https://doi.org/10.1038/nrm1890.

Article  CAS  PubMed  Google Scholar 

Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 2011;475(7356):316–23. https://doi.org/10.1038/nature10316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pillai EK, Franze K. Mechanics in the nervous system: from development to disease. Neuron. 2023;112(3):342–61. https://doi.org/10.1016/j.neuron.2023.10.005.

Article  CAS  PubMed  Google Scholar 

Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10(1):53–62. https://doi.org/10.1038/nrm2596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatterjee S, Fisher AB. Mechanotransduction: forces, sensors, and redox signaling. Antioxid Redox Signal. 2014;20(6):868–71. https://doi.org/10.1089/ars.2013.5753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med. 2006;259(4):351–63. https://doi.org/10.1111/j.1365-2796.2006.01621.x.

Article  CAS  PubMed  Google Scholar 

Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, et al. Piezo1 channels as force sensors in mechanical force-related chronic inflammation. Front Immunol. 2022;13: 816149. https://doi.org/10.3389/fimmu.2022.816149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raaz U, Toh R, Maegdefessel L, Adam M, Nakagami F, Emrich FC, et al. Hemodynamic regulation of reactive oxygen species: implications for vascular diseases. Antioxid Redox Signal. 2014;20(6):914–28. https://doi.org/10.1089/ars.2013.5507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di X, Gao X, Peng L, Ai J, Jin X, Qi S, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8(1):282. https://doi.org/10.1038/s41392-023-01501-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, et al. Magnetic measurement and stimulation of cellular and intracellular structures. ACS Nano. 2020;14(4):3805–21. https://doi.org/10.1021/acsnano.0c00959.

Article  CAS  PubMed  Google Scholar 

Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and motion of organelles and single molecules in living cells. Chem Rev. 2017;117(5):4342–75. https://doi.org/10.1021/acs.chemrev.6b00638.

Article  CAS  PubMed  Google Scholar 

Bertillot F, Miroshnikova YA, Wickström SA. Snapshot: mechanotransduction in the nucleus. Cell. 2022;185(19):3638-38.e1. https://doi.org/10.1016/j.cell.2022.08.017.

Article  CAS  PubMed  Google Scholar 

Favre Bulle IA, Scott EK. Optical tweezers across scales in cell biology. Trends Cell Biol. 2022;32(11):932–46. https://doi.org/10.1016/j.tcb.2022.05.001.

Article  PubMed  PubMed Central  Google Scholar 

Li B, Wei Y, Li Q, Chen N, Li J, Liu L, et al. Nanomechanical induction of autophagy-related fluorescence in single cells with atomic force microscopy. Adv Sci. 2021;8(24):2102989. https://doi.org/10.1002/advs.202102989.

Article  CAS  Google Scholar 

Li D, Colin-York H, Barbieri L, Javanmardi Y, Guo Y, Korobchevskaya K, et al. Astigmatic traction force microscopy (aTFM). Nat Commun. 2021;12(1):2168. https://doi.org/10.1038/s41467-021-22376-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colin-York H, Eggeling C, Fritzsche M. Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nat Protoc. 2017;12(4):783–96. https://doi.org/10.1038/nprot.2017.009.

Article  CAS  PubMed  Google Scholar 

Liu Z, Liu Y, Chang Y, Seyf HR, Henry A, Mattheyses AL, et al. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat Methods. 2016;13(2):143–6. https://doi.org/10.1038/nmeth.3689.

Article  CAS  PubMed  Google Scholar 

Weber M, Hagedorn CH, Harrison DG, Searles CD. Laminar shear stress and 3′ polyadenylation of eNOS mRNA. Circ Res. 2005;96(11):1161–8. https://doi.org/10.1161/01.RES.0000170651.72198.fa.

Article  CAS  PubMed  Google Scholar 

Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol. 2007;3(1):36–40. https://doi.org/10.1038/nnano.2007.418.

Article  CAS  PubMed  Google Scholar 

Liu YL, Huang WH. Stretchable electrochemical sensors for cell and tissue detection. Angew Chem Int Ed. 2021;60(6):2757–67. https://doi.org/10.1002/anie.202007754.

Article  CAS  Google Scholar 

Yu RJ, Ying YL, Gao R, Long YT. Confined nanopipette sensing: from single molecules, single nanoparticles, to single cells. Angew Chem Int Ed. 2019;58(12):3706–14. https://doi.org/10.1002/anie.201803229.

Article  CAS  Google Scholar 

Zhang L, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain. Acc Chem Res. 2018;51(3):688–96. https://doi.org/10.1021/acs.accounts.7b00543.

Article  CAS  PubMed  Google Scholar 

Phan NTN, Li X, Ewing AG. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Rev Chem. 2017;1(6):0048. https://doi.org/10.1038/s41570-017-0048.

Article  CAS  Google Scholar 

Liu YL, Jin ZH, Liu YH, Hu XB, Qin Y, Xu JQ, et al. Stretchable electrochemical sensor for real-time monitoring of cells and tissues. Angew Chem Int Ed. 2016;55(14):4537–41. https://doi.org/10.1002/anie.201601276.

Article  CAS  Google Scholar 

Bi CX, Jin KQ, Yan J, Qin Y, Hong F, Huang WH, et al. Nanofiber-based stretchable electrodes for oriented culture and mechanotransduction monitoring of smooth muscle cells. ACS Sensors. 2023;8(8):3248–56. https://doi.org/10.1021/acssensors.3c01135.

Article  CAS  PubMed  Google Scholar 

Fan WT, Qin Y, Hu XB, Yan J, Wu WT, Liu YL, et al. Stretchable electrode based on Au@Pt nanotube networks for real-time monitoring of ROS signaling in endothelial mechanotransduction. Anal Chem. 2020;92(23):15639–46. https://doi.org/10.1021/acs.analchem.0c04015.

Article  CAS  PubMed  Google Scholar 

Qi YT, Jiang H, Wu WT, Zhang FL, Tian SY, Fan WT, et al. Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J Am Chem Soc. 2022;144(22):9723–33. https://doi.org/10.1021/jacs.2c01857.

Article  CAS  PubMed  Google Scholar 

Hillion A, Hallali N, Clerc P, Lopez S, Lalatonne Y, Noûs C, et al. Real-time observation and analysis of magnetomechanical actuation of magnetic nanoparticles in cells. Nano Lett. 2022;22(5):1986–91. https://doi.org/10.1021/acs.nanolett.1c04738.

Comments (0)

No login
gif