Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7(4):265–75. https://doi.org/10.1038/nrm1890.
Article CAS PubMed Google Scholar
Hoffman BD, Grashoff C, Schwartz MA. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 2011;475(7356):316–23. https://doi.org/10.1038/nature10316.
Article CAS PubMed PubMed Central Google Scholar
Pillai EK, Franze K. Mechanics in the nervous system: from development to disease. Neuron. 2023;112(3):342–61. https://doi.org/10.1016/j.neuron.2023.10.005.
Article CAS PubMed Google Scholar
Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10(1):53–62. https://doi.org/10.1038/nrm2596.
Article CAS PubMed PubMed Central Google Scholar
Chatterjee S, Fisher AB. Mechanotransduction: forces, sensors, and redox signaling. Antioxid Redox Signal. 2014;20(6):868–71. https://doi.org/10.1089/ars.2013.5753.
Article CAS PubMed PubMed Central Google Scholar
Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med. 2006;259(4):351–63. https://doi.org/10.1111/j.1365-2796.2006.01621.x.
Article CAS PubMed Google Scholar
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, et al. Piezo1 channels as force sensors in mechanical force-related chronic inflammation. Front Immunol. 2022;13: 816149. https://doi.org/10.3389/fimmu.2022.816149.
Article CAS PubMed PubMed Central Google Scholar
Raaz U, Toh R, Maegdefessel L, Adam M, Nakagami F, Emrich FC, et al. Hemodynamic regulation of reactive oxygen species: implications for vascular diseases. Antioxid Redox Signal. 2014;20(6):914–28. https://doi.org/10.1089/ars.2013.5507.
Article CAS PubMed PubMed Central Google Scholar
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8(1):282. https://doi.org/10.1038/s41392-023-01501-9.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, et al. Magnetic measurement and stimulation of cellular and intracellular structures. ACS Nano. 2020;14(4):3805–21. https://doi.org/10.1021/acsnano.0c00959.
Article CAS PubMed Google Scholar
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and motion of organelles and single molecules in living cells. Chem Rev. 2017;117(5):4342–75. https://doi.org/10.1021/acs.chemrev.6b00638.
Article CAS PubMed Google Scholar
Bertillot F, Miroshnikova YA, Wickström SA. Snapshot: mechanotransduction in the nucleus. Cell. 2022;185(19):3638-38.e1. https://doi.org/10.1016/j.cell.2022.08.017.
Article CAS PubMed Google Scholar
Favre Bulle IA, Scott EK. Optical tweezers across scales in cell biology. Trends Cell Biol. 2022;32(11):932–46. https://doi.org/10.1016/j.tcb.2022.05.001.
Article PubMed PubMed Central Google Scholar
Li B, Wei Y, Li Q, Chen N, Li J, Liu L, et al. Nanomechanical induction of autophagy-related fluorescence in single cells with atomic force microscopy. Adv Sci. 2021;8(24):2102989. https://doi.org/10.1002/advs.202102989.
Li D, Colin-York H, Barbieri L, Javanmardi Y, Guo Y, Korobchevskaya K, et al. Astigmatic traction force microscopy (aTFM). Nat Commun. 2021;12(1):2168. https://doi.org/10.1038/s41467-021-22376-w.
Article CAS PubMed PubMed Central Google Scholar
Colin-York H, Eggeling C, Fritzsche M. Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nat Protoc. 2017;12(4):783–96. https://doi.org/10.1038/nprot.2017.009.
Article CAS PubMed Google Scholar
Liu Z, Liu Y, Chang Y, Seyf HR, Henry A, Mattheyses AL, et al. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat Methods. 2016;13(2):143–6. https://doi.org/10.1038/nmeth.3689.
Article CAS PubMed Google Scholar
Weber M, Hagedorn CH, Harrison DG, Searles CD. Laminar shear stress and 3′ polyadenylation of eNOS mRNA. Circ Res. 2005;96(11):1161–8. https://doi.org/10.1161/01.RES.0000170651.72198.fa.
Article CAS PubMed Google Scholar
Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol. 2007;3(1):36–40. https://doi.org/10.1038/nnano.2007.418.
Article CAS PubMed Google Scholar
Liu YL, Huang WH. Stretchable electrochemical sensors for cell and tissue detection. Angew Chem Int Ed. 2021;60(6):2757–67. https://doi.org/10.1002/anie.202007754.
Yu RJ, Ying YL, Gao R, Long YT. Confined nanopipette sensing: from single molecules, single nanoparticles, to single cells. Angew Chem Int Ed. 2019;58(12):3706–14. https://doi.org/10.1002/anie.201803229.
Zhang L, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain. Acc Chem Res. 2018;51(3):688–96. https://doi.org/10.1021/acs.accounts.7b00543.
Article CAS PubMed Google Scholar
Phan NTN, Li X, Ewing AG. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Rev Chem. 2017;1(6):0048. https://doi.org/10.1038/s41570-017-0048.
Liu YL, Jin ZH, Liu YH, Hu XB, Qin Y, Xu JQ, et al. Stretchable electrochemical sensor for real-time monitoring of cells and tissues. Angew Chem Int Ed. 2016;55(14):4537–41. https://doi.org/10.1002/anie.201601276.
Bi CX, Jin KQ, Yan J, Qin Y, Hong F, Huang WH, et al. Nanofiber-based stretchable electrodes for oriented culture and mechanotransduction monitoring of smooth muscle cells. ACS Sensors. 2023;8(8):3248–56. https://doi.org/10.1021/acssensors.3c01135.
Article CAS PubMed Google Scholar
Fan WT, Qin Y, Hu XB, Yan J, Wu WT, Liu YL, et al. Stretchable electrode based on Au@Pt nanotube networks for real-time monitoring of ROS signaling in endothelial mechanotransduction. Anal Chem. 2020;92(23):15639–46. https://doi.org/10.1021/acs.analchem.0c04015.
Article CAS PubMed Google Scholar
Qi YT, Jiang H, Wu WT, Zhang FL, Tian SY, Fan WT, et al. Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J Am Chem Soc. 2022;144(22):9723–33. https://doi.org/10.1021/jacs.2c01857.
Article CAS PubMed Google Scholar
Hillion A, Hallali N, Clerc P, Lopez S, Lalatonne Y, Noûs C, et al. Real-time observation and analysis of magnetomechanical actuation of magnetic nanoparticles in cells. Nano Lett. 2022;22(5):1986–91. https://doi.org/10.1021/acs.nanolett.1c04738.
Comments (0)