Combination of real-time and hyphenated mass spectrometry for improved characterisation of exhaled breath biomarkers in clinical research

Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8(3): 034001.

Article  PubMed  CAS  Google Scholar 

Drabinska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res. 2021;15(3).

Blanchet L, Smolinska A, Baranska A, Tigchelaar E, Swertz M, Zhernakova A, et al. Factors that influence the volatile organic compound content in human breath. J Breath Res. 2017;11(1): 016013.

Article  PubMed  CAS  Google Scholar 

Longo V, Forleo A, Ferramosca A, Notari T, Pappalardo S, Siciliano P, et al. Blood, urine and semen volatile organic compound (VOC) pattern analysis for assessing health environmental impact in highly polluted areas in Italy. Environ Pollut. 2021;286: 117410.

Article  PubMed  CAS  Google Scholar 

Paciencia I, Madureira J, Rufo J, Moreira A, Fernandes EO. A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. J Toxicol Environ Health B Crit Rev. 2016;19(2):47–64.

Article  PubMed  CAS  Google Scholar 

Yang S, Li X, Song M, Liu Y, Yu X, Chen S, et al. Characteristics and sources of volatile organic compounds during pollution episodes and clean periods in the Beijing-Tianjin-Hebei region. Sci Total Environ. 2021;799: 149491.

Article  PubMed  CAS  Google Scholar 

Weisel CP, Alimokhtari S, Sanders PF. Indoor air VOC concentrations in suburban and rural New Jersey. Environ Sci Technol. 2008;42(22):8231–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Salman D, Ibrahim W, Kanabar A, Joyce A, Zhao B, Singapuri A, et al. The variability of volatile organic compounds in the indoor air of clinical environments. J Breath Res. 2021;16(1).

Schleich FN, Zanella D, Stefanuto PH, Bessonov K, Smolinska A, Dallinga JW, et al. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am J Respir Crit Care Med. 2019;200(4):444–53.

Article  PubMed  CAS  Google Scholar 

Ibrahim W, Carr L, Cordell R, Wilde MJ, Salman D, Monks PS, et al. Breathomics for the clinician: the use of volatile organic compounds in respiratory diseases. Thorax. 2021;76(5):514–21.

Article  PubMed  Google Scholar 

Roquencourt C, Salvator H, Bardin E, Lamy E, Farfour E, Naline E, et al. Enhanced real-time mass spectrometry breath analysis for the diagnosis of COVID-19. ERJ Open Res. 2023;9(5):00206–2023.

Article  PubMed  PubMed Central  Google Scholar 

Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine. 2021;63: 103154.

Article  PubMed  CAS  Google Scholar 

Belizario JE, Faintuch J, Malpartida MG. Breath biopsy and discovery of exclusive volatile organic compounds for diagnosis of infectious diseases. Front Cell Infect Microbiol. 2020;10: 564194.

Article  PubMed  Google Scholar 

Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience. 2013;2(1):13.

Article  PubMed  PubMed Central  Google Scholar 

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.

Article  PubMed  CAS  Google Scholar 

Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):211–21.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Majchrzak T, Wojnowski W, Lubinska-Szczygel M, Rozanska A, Namiesnik J, Dymerski T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: a tutorial review. Anal Chim Acta. 2018;1035:1–13.

Article  PubMed  CAS  Google Scholar 

Phillips M, Cataneo RN, Chaturvedi A, Kaplan PD, Libardoni M, Mundada M, et al. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS ONE. 2013;8(9): e75274.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gould O, Drabinska N, Ratcliffe N, de Lacy Costello B. Hyphenated mass spectrometry versus real-time mass spectrometry techniques for the detection of volatile compounds from the human body. Molecules. 2021;26(23):7185.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Meurs J, Sakkoula E, Cristescu SM. Real-time non-invasive monitoring of short-chain fatty acids in exhaled breath. Front Chem. 2022;10: 853541.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Roslund K, Lehto M, Pussinen P, Hartonen K, Groop PH, Halonen L, et al. Identifying volatile in vitro biomarkers for oral bacteria with proton-transfer-reaction mass spectrometry and gas chromatography-mass spectrometry. Sci Rep. 2021;11(1):16897.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Roquencourt C, Grassin-Delyle S, Thevenot EA. ptairMS: real-time processing and analysis of PTR-TOF-MS data for biomarker discovery in exhaled breath. Bioinformatics. 2022;38(7):1930–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kuo TC, Tan CE, Wang SY, Lin OA, Su BH, Hsu MT, et al. Human breathomics database. Database (Oxford). 2020.

Blake RS, Monks PS, Ellis AM. Proton-transfer reaction mass spectrometry. Chem Rev. 2009;109(3):861–96.

Article  PubMed  CAS  Google Scholar 

Mallette ND, Knighton WB, Strobel GA, Carlson RP, Peyton BM. Resolution of volatile fuel compound profiles from Ascocoryne sarcoides: a comparison by proton transfer reaction-mass spectrometry and solid phase microextraction gas chromatography-mass spectrometry. AMB Express. 2012;2(1):23.

Article  PubMed  PubMed Central  Google Scholar 

Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) - Medical applications, food control and environmental research. Int J Mass Spectrom. 1998;173(3):191–241.

Article  CAS  Google Scholar 

Romano A, Hanna GB. Identification and quantification of VOCs by proton transfer reaction time of flight mass spectrometry: an experimental workflow for the optimization of specificity, sensitivity, and accuracy. J Mass Spectrom. 2018;53(4):287–95.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gueneron M, Erickson MH, VanderSchelden GS, Jobson BT. PTR-MS fragmentation patterns of gasoline hydrocarbons. Int J Mass Spectrom. 2015;379:97–109.

Article  CAS  Google Scholar 

Schwarz K, Filipiak W, Amann A. Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res. 2009;3(2): 027002.

Article  PubMed  CAS  Google Scholar 

Ernle L, Wang NJ, Bekö G, Morrison G, Wargocki P, Weschler CJ, et al. Assessment of aldehyde contributions to PTR-MS m/z 69.07 in indoor air measurements. Environ Sci-Atmos. 2023;3(9):1286–95.

Felton TW, Ahmed W, White IR, van Oort P, Rattray NJW, Docherty C, et al. Analysis of exhaled breath to identify critically ill patients with ventilator-associated pneumonia. Anaesthesia. 2023;78(6):712–21.

Article  PubMed  CAS  Google Scholar 

Xue C, Xu X, Liu Z, Zhang Y, Xu Y, Niu J, et al. Intelligent COVID-19 screening platform based on breath analysis. J Breath Res. 2022;17(1).

Berna AZ, McCarthy JS, Wang RX, Saliba KJ, Bravo FG, Cassells J, et al. Analysis of breath specimens for biomarkers of Plasmodium falciparum infection. J Infect Dis. 2015;212(7):1120–8.

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif