Alduais Y, Zhang H, Fan F, Chen J, Chen B. Non-small cell lung cancer (NSCLC): a review of risk factors, diagnosis, and treatment. Medicine. 2023;102(8):e32899-e.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49.
Frick C, Rumgay H, Vignat J, Ginsburg O, Nolte E, Bray F, et al. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: a population-based study. Lancet Glob Health. 2023;11(11):e1700–12.
Article CAS PubMed PubMed Central Google Scholar
Jiang C, Zhao M, Hou S, Hu X, Huang J, Wang H, et al. The indicative value of serum tumor markers for metastasis and stage of non-small cell lung cancer. Cancers. 2022;14(20):5064.
Article CAS PubMed PubMed Central Google Scholar
Chinnappan R, Mir TA, Alsalameh S, Makhzoum T, Alzhrani A, Alnajjar K, et al. Emerging biosensing methods to monitor lung cancer biomarkers in biological samples: a comprehensive review. Cancers. 2023;15(13):3414.
Article CAS PubMed PubMed Central Google Scholar
Lee DS, Kim SJ, Kang JH, Hong SH, Jeon EK, Kim YK, et al. Serum carcinoembryonic antigen levels and the risk of whole-body metastatic potential in advanced non-small cell lung cancer. J Cancer. 2014;5(8):663.
Article PubMed PubMed Central Google Scholar
Sanko V, Kuralay F. Label-free electrochemical biosensor platforms for cancer diagnosis: recent achievements and challenges. Biosensors. 2023;13(3):333.
Article CAS PubMed PubMed Central Google Scholar
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, et al. Recent trends in electrochemical sensors for vital biomedical markers using hybrid nanostructured materials. Adv Sci. 2020;7(13):1902980.
Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821–71.
Batool A, Sherazi TA, Naqvi SAR. Organic–inorganic nanohybrid-based electrochemical biosensors. Hybrid Nanomaterials: Biomedical, Environmental and Energy Applications: Springer; 2022. p. 151–73.
Yang G, Zhu C, Du D, Zhu J, Lin Y. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale. 2015;7(34):14217–31.
Article CAS PubMed Google Scholar
Arora K, Srivastava S, Solanki PR, Puri NK. Electrochemical hydrogen gas sensing employing palladium oxide/reduced graphene oxide (PdO-rGO) nanocomposites. IEEE Sens J. 2019;19(18):8262–71.
Sandil D, Srivastava S, Malhotra B, Sharma S, Puri NK. Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker. J Alloys Compd. 2018;763:102–10.
Sharma K, Puri NK. Enhanced electrochemical performance of hydrothermally exfoliated hexagonal boron nitride nanosheets for applications in electrochemistry. J Electrochem Soc. 2021;168(5):056512.
Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HME-S. Enzyme immobilization technologies and industrial applications. ACS Omega. 2023;8(6):5184–96.
Article CAS PubMed PubMed Central Google Scholar
Schroeder B, Le Xuan H, Völzke JL, Weller MG. Preactivation crosslinking—an efficient method for the oriented immobilization of antibodies. Methods Protoc. 2019;2(2):35.
Article CAS PubMed Central Google Scholar
Akouros A, Koutroumanis N, Manikas AC, Paterakis G, Carbone MGP, Anagnostopoulos G, et al. Highly stretchable strain sensors based on Marangoni self-assemblies of graphene and its hybrids with other 2D materials. Nanotechnology. 2023;34(29):295501.
Muratov DS, Vanyushin V, Koshlakova VA, Kolesnikov EA, Maksimkin AV, Stepashkin AA, et al. Improved mechanical and thermal properties of polypropylene filled with reduced graphene oxide (rGO) and hexagonal boron nitride (hBN) particles. J Alloys Compd. 2024;972:172882.
Mussa Y, Ahmed F, Arsalan M, Alsharaeh E. Two dimensional (2D) reduced graphene oxide (RGO)/hexagonal boron nitride (h-BN) based nanocomposites as anodes for high temperature rechargeable lithium-ion batteries. Sci Rep. 2020;10(1):1882.
Article CAS PubMed PubMed Central Google Scholar
Byrappa K, Yoshimura M. Handbook of hydrothermal technology: William Andrew; Elsevier. 2012.
Sharma K, Puri NK, Singh B. An efficient electrochemical nano-biosensor based on hydrothermally engineered ultrathin nanostructures of hexagonal boron nitride nanosheets for label-free detection of carcinoembryonic antigen. Appl Nanosci. 2023;14(1):217–30.
Vivanco-Martinez F, Bragado R, Albar J, Juarez C, Ortiz-Masllorens F. Chemical modification of carboxyl groups in human Fcγ fragment: structural role and effect on the complement fixation. Mol Immunol. 1980;17(3):327–36.
Article CAS PubMed Google Scholar
Vashist SK. Comparison of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide based strategies to crosslink antibodies on amine-functionalized platforms for immunodiagnostic applications. Diagnostics. 2012;2(3):23–33.
Article CAS PubMed PubMed Central Google Scholar
Welch NG, Scoble JA, Muir BW, Pigram PJ. Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases. 2017;12(2).
Yang S, Yue W, Huang D, Chen C, Lin H, Yang X. A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2012;2(23):8827–32.
Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61(20):14095.
Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. PCCP. 2007;9(11):1276–90.
Article CAS PubMed Google Scholar
Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013;53:38–49.
Purwaningsih H, Suari NMIP, Widiyastuti W, Setyawan H. Preparation of rGO/MnO2 composites through simultaneous graphene oxide reduction by electrophoretic deposition. ACS Omega. 2022;7(8):6760–7.
Article CAS PubMed PubMed Central Google Scholar
Yao Y-H, Li J, Zhang H, Tang H-L, Fang L, Niu G-D, et al. Facile synthesis of a covalently connected RGO–COF hybrid material by in situ reaction for enhanced visible-light induced photocatalytic H 2 evolution. J Mater Chem A. 2020;8(18):8949–56.
Hanifah MFR, Jaafar J, Othman M, Ismail A, Rahman MA, Yusof N, et al. Facile synthesis of highly favorable graphene oxide: effect of oxidation degree on the structural, morphological, thermal and electrochemical properties. Materialia. 2019;6:100344.
Debbarma R, Behura S, Nguyen P, Sreeprasad T, Berry V. Electrical transport and network percolation in graphene and boron nitride mixed-platelet structures. ACS Appl Mater Interfaces. 2016;8(13):8721–7.
Article CAS PubMed Google Scholar
Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, et al. Controlled, stepwise reduction and band gap manipulation of graphene oxide. J Phys Chem Lett. 2012;3(8):986–91.
Article CAS PubMed Google Scholar
Socrates G. Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons; 2004.
Martínez Cortizas A, López-Costas O. Linking structural and compositional changes in archaeological human bone collagen: An FTIR-ATR approach. Sci Rep. 2020;10(1):17888.
Article PubMed PubMed Central Google Scholar
Suys O, Derenne A, Goormaghtigh E. ATR-FTIR biosensors for antibody detection and analysis. Int J Mol Sci. 2022;23(19):
Comments (0)