Smithwick RH. The problem of producing complete and lasting sympathetic denervation of the upper extremity by preganglionic section. Ann Surg. 1940;112:1085–1100.
Article CAS PubMed PubMed Central Google Scholar
Grimson KS. Total thoracic and partial to total lumbar sympathectomy and celiac ganglionectomy in the treatment of hypertension. Ann Surg. 1941;114:753–75.
Article CAS PubMed PubMed Central Google Scholar
Guyton AC. Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol Regul Integr Comp Physiol. 1990;259:R865–77.
Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2010;108:227–37.
Article CAS PubMed Google Scholar
DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–1997.
Article CAS PubMed Google Scholar
Dampney RAL, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharm Physiol. 2005;32:419–25.
Campos RR. Oxidative stress in the brain and arterial hypertension. Hypertens Res. 2009;32:1047–8.
Campos RR, Oliveira-Sales EB, Nishi EE, Paton JF, Bergamaschi CT. Mechanisms of renal sympathetic activation in renovascular hypertension. Exp Physiol. 2015;100:496–501.
Article CAS PubMed Google Scholar
Phillips JK, Campos RR. Role of renal nerves in normal and pathophysiological conditions. Auton Neurosci. 2017;204:1–3.
De Almeida Chaves Rodrigues AF, de Lima IL, Bergamaschi CT, Campos RR, Hirata AE, Schoorlemmer GH, et al. Increased renal sympathetic nerve activity leads to hypertension and renal dysfunction in offspring from diabetic mothers. Am J Physiol Ren Physiol. 2013;304:F189–97.
Samuelsson AM, Morris A, Igosheva N, Kirk SL, Pombo JM, Coen CW, et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension. 2010;55:76–82.
Article CAS PubMed Google Scholar
Hao XQ, Zhang HG, Yuan ZB, Yang DL, Hao LY, Li XH. Prenatal exposure to lipopolysaccharide alters the intrarenal renin-angiotensin system and renal damage in offspring rats. Hypertens Res. 2010;33:76–82.
Article CAS PubMed Google Scholar
Hao, X, Long, X, Fan, L, Gou J, Liu Y, Fu Y, et al. Prenatal LPS leads to increases in RAS expression within the PVN and overactivation of sympathetic outflow in offspring rats. Hypertens Res. 2024 https://doi.org/10.1038/s41440-024-01754-z
Pontes RB, Girardi AC, Nishi EE, Campos RR, Bergamaschi CT. Crosstalk between the renal sympathetic nerve and intrarenal angiotensin II modulates proximal tubular sodium reabsorption. Exp Physiol. 2015;100:502–6.
Article CAS PubMed Google Scholar
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases. J Inflamm Res. 2022;15:3083–9.
Article CAS PubMed PubMed Central Google Scholar
Xi H, Li X, Zhou Y, Sun Y. The regulatory effect of Paraventricular nucleus on hypertension. Neuroendocrinol. 2024;114:1–13.
Simões LR, Sangiogo G, Tashiro MH, Generoso JS. Maternal immune activation induced by lipopolysaccharide triggers immune response in pregnant mother and fetus, and induces behavioral impairment in adult rats. J Psychiatr Res. 2018;100:71–83.
Grigsby PL, Hirst JJ, Scheerlinck JP, Phillips DJ, Jenkin G. Fetal responses to maternal and intra-amniotic lipopolysaccharide administration in sheep. Biol Reprod. 2003;68:1695–702.
Article CAS PubMed Google Scholar
Shen XZ, Li Y, Li L, Shah KH, Bernstein KE, Lyden P, et al. Microglia participate in neurogenic regulation of hypertension. Hypertension. 2015;66:309–16.
Article CAS PubMed Google Scholar
Winklewski PJ, Radkowski M, Wszedybyl- Winklewska M, Demkow U. Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation. 2015;12:85.
Article PubMed PubMed Central Google Scholar
Wei SG, Yu Y, Zhang ZH, Felder RB. Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat. Hypertension. 2015;65:1126–33.
Article CAS PubMed Google Scholar
Milanez MIO, Veiga AC, Martins BS, Pontes RB, Bergamaschi CT, Campos RR, et al. Renal sensory activity regulates the γ-aminobutyric acidergic inputs to the paraventricular nucleus of the hypothalamus in goldblatt hypertension. Front Physiol. 2020;11:601237.
Comments (0)