Aspects of renal function and renal artery anatomy as indications for renal denervation

Whelton PK, Carey RM, Aronow WS, Casey DE Jr., Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:e127–e248.

Article  PubMed  Google Scholar 

Thomas G, Xie D, Chen HY, Anderson AH, Appel LJ, Bodana S, et al. Prevalence and prognostic significance of apparent treatment resistant hypertension in chronic kidney disease: report from the chronic renal insufficiency cohort study. Hypertension. 2016;67:387–96.

Article  CAS  PubMed  Google Scholar 

Grassi G, Biffi A, Seravalle G, Bertoli S, Airoldi F, Corrao G, et al. Sympathetic nerve traffic overactivity in chronic kidney disease: a systematic review and meta-analysis. J Hypertens. 2021;39:408–16.

Article  CAS  PubMed  Google Scholar 

Ewen S, Ukena C, Luscher TF, Bergmann M, Blankestijn PJ, Blessing E, et al. Anatomical and procedural determinants of catheter-based renal denervation. Cardiovasc Revasc Med. 2016;17:474–9.

Article  PubMed  Google Scholar 

Recto C, Pilia AM, Campi R, Branca JJV, Pacini A. Paternostro1 F Renal artery variations: a 20.782 kidneys review. Ital J Anat Embryol. 2019;124:153–63.

Lauder L, Ewen S, Tzafriri AR, Edelman ER, Luscher TF, Blankestijn PJ, et al. Renal artery anatomy assessed by quantitative analysis of selective renal artery in 1000 patients with hypertension. EuroIntervention. 2018;14:121–8.

Satyapal KS, Haffejee AA, Singh B, Ramsaroop L, Robbs JV, Kalideen JM. Additional renal arteries: incidence and morphometry. Surg Radio Anat. 2001;23:33–8.

Article  CAS  Google Scholar 

Natsis K, Paraskevas G, Panagouli E, Tsaraklis A, Lolis E, Piagkou M, et al. A morphometric study of multiple renal arteries in Greek population and a systematic review. Rom J Morphol Embryol. 2014;55:1111–22.

PubMed  Google Scholar 

Kang K, Ma Y, Jia C, Cheng Y, Yang Y, Wang L, et al. Relationship between accessory renal artery and clinical characteristics of middle-aged patients with primary hypertension. Int J Hypertens. 2020;2020:7109502.

Article  PubMed  PubMed Central  Google Scholar 

Sanghvi K, Wang Y, Daemen J, Mathur A, Jain A, Dohad S, et al. Renal Artery Variations in Patients With Mild-to-Moderate Hypertension From the RADIANCE-HTN SOLO Trial. Cardiovasc Revasc Med. 2022;39:58–65.

Article  PubMed  Google Scholar 

Palmieri BJ, Petroianu A, Silva LC, Andrade LM, Alberti LR. Study of arterial pattern of 200 renal pedicle through angiotomography. Rev Col Bras Cir. 2011;38:116–21.

Article  PubMed  Google Scholar 

Ramadan SU, Yigit H, Gokharman D, Tuncbilek I, Dolgun NA, Kosar P, et al. Can renal dimensions and the main renal artery diameter indicate the presence of an accessory renal artery? A 64-slice CT study. Diagn Inter Radio. 2011;17:266–71.

Google Scholar 

Lauder L, Ewen S, Tzafriri AR, Edelman ER, Cremers B, Kulenthiran S, et al. Anatomical and procedural determinants of ambulatory blood pressure lowering following catheter-based renal denervation using radiofrequency. Cardiovasc Revasc Med. 2018;19:845–51.

Article  PubMed  PubMed Central  Google Scholar 

DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298:R245–53.

Article  CAS  PubMed  Google Scholar 

Zoccali C, Mallamaci F, Finocchiaro P. Atherosclerotic renal artery stenosis: epidemiology, cardiovascular outcomes, and clinical prediction rules. J Am Soc Nephrol. 2002;13(Suppl 3):S179–83.

Article  PubMed  Google Scholar 

Shen J, Lyu L, Wu X, Ji J, Zeng C, Li S, et al. Correlation between renal artery anatomy and hypertension: a retrospective analysis of 3000 patients. Evid Based Complement Altern Med. 2021;2021:9957361.

Article  Google Scholar 

Id D, Kaltenbach B, Bertog SC, Hornung M, Hofmann I, Vaskelyte L, et al. Does the presence of accessory renal arteries affect the efficacy of renal denervation? JACC Cardiovasc Inter. 2013;6:1085–91.

Article  Google Scholar 

Sato Y, Kawakami R, Jinnouchi H, Sakamoto A, Cornelissen A, Mori M, et al. Comprehensive assessment of human accessory renal artery periarterial renal sympathetic nerve distribution. JACC Cardiovasc Inter. 2021;14:304–15.

Article  Google Scholar 

Mohammad AA, Nawar K, Binks O, Abdulla MH. Effects of renal denervation on kidney function in patients with chronic kidney disease: a systematic review and meta-analysis. J Hum Hypertens. 2024;38:29–44.

Article  PubMed  Google Scholar 

Xia M, Liu T, Chen D, Huang Y. Efficacy and safety of renal denervation for hypertension in patients with chronic kidney disease: a meta-analysis. Int J Hyperth. 2021;38:732–42.

Article  CAS  Google Scholar 

Mahfoud F, Townsend RR, Kandzari DE, Kario K, Schmieder RE, Tsioufis K, et al. Changes in plasma renin activity after renal artery sympathetic denervation. J Am Coll Cardiol. 2021;77:2909–19.

DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1517–24.

Article  CAS  PubMed  Google Scholar 

Mauriello A, Rovella V, Anemona L, Servadei F, Giannini E, Bove P, et al. Increased sympathetic renal innervation in hemodialysis patients is the anatomical substrate of sympathetic hyperactivity in end-stage renal disease. J Am Heart Assoc. 2015;4:e002426.

Ott C, Mahfoud F, Mancia G, Narkiewicz K, Ruilope LM, Fahy M, et al. Renal denervation in patients with versus without chronic kidney disease: results from the Global SYMPLICITY Registry with follow-up data of 3 years. Nephrol Dial Transpl. 2022;37:304–10.

Article  Google Scholar 

Polonia J, Azevedo A, Monte M, Silva JA, Bertoquini S. Annual deterioration of renal function in hypertensive patients with and without diabetes. Vasc Health Risk Manag. 2017;13:231–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiuchi MG, Graciano ML, Carreira MA, Kiuchi T, Chen S, Lugon JR. Long-term effects of renal sympathetic denervation on hypertensive patients with mild to moderate chronic kidney disease. J Clin Hypertens. 2016;18:190–6.

Article  Google Scholar 

Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019;7:128–39.

Article  CAS  PubMed  Google Scholar 

Europian Society of Urogenital Radiology. ESUR guidlines on contrast agents. 2018:17–22.

Lo HY, Lee JK, Lin YH. The feasibility, efficacy, and safety of RDN procedure using CO(2) angiography through radial artery in severe chronic kidney disease patients. Hypertens Res. 2024;47:760–6.

Article  CAS  PubMed  Google Scholar 

Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86:649–52.

Article  CAS  PubMed  Google Scholar 

Isaka Y, Hayashi H, Aonuma K, Horio M, Terada Y, Doi K, et al. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Clin Exp Nephrol. 2020;24:1–44.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif