Estimating lumbar bone mineral density from conventional MRI and radiographs with deep learning in spine patients

Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300. https://doi.org/10.1210/er.2009-0024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen AJ, Roe FJ (2000) Review of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt. Food Chem Toxicol 38:237–253. https://doi.org/10.1016/s0278-6915(99)00145-3

Article  CAS  PubMed  Google Scholar 

Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94. https://doi.org/10.1677/jme.0.0260079

Article  CAS  PubMed  Google Scholar 

Erez HB, Weller A, Vaisman N, Kreitler S (2012) The relationship of depression, anxiety and stress with low bone mineral density in post-menopausal women. Arch Osteoporos 7:247–255. https://doi.org/10.1007/s11657-012-0105-0

Article  PubMed  Google Scholar 

Keaveny TM, Yeh OC (2002) Architecture and trabecular bone - toward an improved understanding of the biomechanical effects of age, sex and osteoporosis. J Musculoskelet Neuronal Interact 2:205–208

CAS  PubMed  Google Scholar 

Glassman SD, Alegre GM (2003) Adult spinal deformity in the osteoporotic spine: options and pitfalls. Instr Course Lect 52:579–588

PubMed  Google Scholar 

Goldstein CL, Brodke DS, Choma TJ (2015) Surgical management of spinal conditions in the elderly osteoporotic spine. Neurosurg 77(Suppl 4):S98–107. https://doi.org/10.1227/NEU.0000000000000948

Brett AD, Brown JK (2015) Quantitative computed tomography and opportunistic bone density screening by dual use of computed tomography scans. J Orthop Translat 3:178–184. https://doi.org/10.1016/j.jot.2015.08.006

Article  PubMed  PubMed Central  Google Scholar 

Leonhardt Y, May P, Gordijenko O et al (2020) Opportunistic QCT bone mineral density measurements predicting osteoporotic fractures: a use case in a prospective clinical cohort. Front Endocrinol 11:586352. https://doi.org/10.3389/fendo.2020.586352

Article  Google Scholar 

Wu H-Z, Zhang X-F, Han S-M et al (2020) Correlation of bone mineral density with MRI T2* values in quantitative analysis of lumbar osteoporosis. Arch Osteoporos 15:18. https://doi.org/10.1007/s11657-020-0682-2

Article  PubMed  Google Scholar 

Bae WC, Chen PC, Chung CB et al (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Min Res 27:848–857. https://doi.org/10.1002/jbmr.1535

Article  Google Scholar 

Jerban S, Ma Y, Wei Z et al (2020) Quantitative magnetic resonance imaging of cortical and trabecular bone. Semin Musculoskelet Radiol 24:386–401. https://doi.org/10.1055/s-0040-1710355

Article  PubMed  Google Scholar 

Aydıngöz Ü, Yıldız AE, Ergen FB (2022) Zero echo time musculoskeletal MRI: technique, optimization, applications, and pitfalls. Radiographics 42:1398–1414. https://doi.org/10.1148/rg.220029

Article  PubMed  Google Scholar 

Cheng KY, Moazamian D, Ma Y et al (2023) Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis. Skeletal Radiol 52:2149–2157. https://doi.org/10.1007/s00256-022-04269-1

Article  PubMed  Google Scholar 

Wagner S, Stäbler A, Sittek H et al (2005) Diagnosis of osteoporosis: visual assessment on conventional versus digital radiographs. Osteoporos Int 16:1815–1822. https://doi.org/10.1007/s00198-005-1937-x

Article  PubMed  Google Scholar 

Jergas M, Uffmann M, Escher H et al (1994) Interobserver variation in the detection of osteopenia by radiography and comparison with dual X-ray absorptiometry of the lumbar spine. Skeletal Radiol 23:195–199. https://doi.org/10.1007/BF00197459

Article  CAS  PubMed  Google Scholar 

Jamaludin A, Lootus M, Kadir T et al (2017) ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J 26:1374–1383

Article  PubMed  Google Scholar 

Cina A, Bassani T, Panico M et al (2021) 2-step deep learning model for landmarks localization in spine radiographs. Sci Rep 11:9482. https://doi.org/10.1038/s41598-021-89102-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang B, Yu K, Ning Z et al (2020) Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: a multicenter retrospective cohort study. Bone 140:115561. https://doi.org/10.1016/j.bone.2020.115561

Article  CAS  PubMed  Google Scholar 

Mao L, Xia Z, Pan L et al (2022) Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population. Front Endocrinol 13:971877. https://doi.org/10.3389/fendo.2022.971877

Article  Google Scholar 

Zhang B, Chen Z, Yan R et al (2023) Development and validation of a feature-based broad-learning system for opportunistic osteoporosis screening using lumbar spine radiographs. Acad Radiol. https://doi.org/10.1016/j.acra.2023.07.002

Ho C-S, Chen Y-P, Fan T-Y et al (2021) Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography. Arch Osteoporos 16:153. https://doi.org/10.1007/s11657-021-00985-8

Article  PubMed  Google Scholar 

Oh S, Kang WY, Park H et al (2024) Evaluation of deep learning-based quantitative computed tomography for opportunistic osteoporosis screening. Sci Rep 14:363. https://doi.org/10.1038/s41598-023-45824-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ong W, Liu RW, Makmur A et al (2023) Artificial intelligence applications for osteoporosis classification using computed tomography. Bioeng (Basel) 10. https://doi.org/10.3390/bioengineering10121364

Yasaka K, Akai H, Kunimatsu A et al (2020) Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network. Eur Radiol 30:3549–3557. https://doi.org/10.1007/s00330-020-06677-0

Article  CAS  PubMed  Google Scholar 

Küçükçiloğlu Y, Şekeroğlu B, Adalı T, Şentürk N (2024) Prediction of osteoporosis using MRI and CT scans with unimodal and multimodal deep-learning models. Diagn Interv Radiol 30:9–20. https://doi.org/10.4274/dir.2023.232116

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Zhao T, Chen S et al (2022) Fully automated radiomic screening pipeline for osteoporosis and abnormal bone density with a deep learning-based segmentation using a short lumbar mDixon sequence. Quant Imaging Med Surg 12:1198–1213. https://doi.org/10.21037/qims-21-587

Article  PubMed  PubMed Central  Google Scholar 

Ferizi U, Besser H, Hysi P et al (2019) Artificial intelligence applied to osteoporosis: a performance comparison of machine learning algorithms in predicting fragility fractures from MRI data. J Magn Reson Imaging 49:1029–1038. https://doi.org/10.1002/jmri.26280

Article  PubMed  Google Scholar 

Kanis JA, Oden A, Johansson H et al (2009) FRAX® and its applications to clinical practice. Bone 44:734–743. https://doi.org/10.1016/j.bone.2009.01.373

Article  PubMed  Google Scholar 

Blake GM, Fogelman I (2009) The clinical role of dual energy X-ray absorptiometry. Eur J Radiol 71:406–414. https://doi.org/10.1016/j.ejrad.2008.04.062

Article  PubMed  Google Scholar 

Schilling AT, Ehresman J, Pennington Z et al (2021) Interrater and intrarater reliability of the vertebral bone quality score. World Neurosurg 154:e277–e282. https://doi.org/10.1016/j.wneu.2021.07.020

Article  PubMed  Google Scholar 

Ehresman J, Schilling A, Yang X et al (2021) Vertebral bone quality score predicts fragility fractures independently of bone mineral density. Spine J 21:20–27. https://doi.org/10.1016/j.spinee.2020.05.540

Comments (0)

No login
gif