Roshchina V.D., Roshchina V.V. 1989. Vydelitelnaza funktsia vysshikh rastenii (The excretory function of higher plants). Moscow: Nauka.
Roshchina V.V., Kuchin A.V., Kuniev A.P., Soltani G.A., Khaibulaeva L.M., Prizova N.K. 2022. The presence of azulenes on the surface of plant cells as an ozone sensitivity test. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 39 (1), 167–174.
Roshchina V.V. 1991. Biomediatory v rasteniyakh. Atsetilkholin i biogennye aminy (Biomediators in plants. Acetylcholine and biogenic amines). Pushchino: Biological Center of the Russian Academy of Sciences.
Roshchina V.V., Yashin V.A. 2014. Neurotransmitters catecholamines and histamine in allelopathy: Plant cells as models in fluorescence microscopy. Allelopathy J. 34 (1), 1–16
Roshchina V.V., Yashin V.A., Kuchin A.V. 2015. Fluorescent analysis for bioindication of ozone on unicellular models. J. Fluorescence. 25 (3), 595–601. https://doi.org/10.1007/s10895-015-1540-2
Li C., Sun X., Chang C., Jia D., Wei Z., Li C., Ma F. 2015. Dopamine alleviates salt-induced stress in Malus hupehensis. Physiol. Plantarum. 153, 584–602.
Liu Q., Gao T., Liu W., Liu Y., Zhao Y., Li W., Ding K., Ma F., Li C. 2020. Functions of dopamine in plants: A review. Plant Signal. Behav. 15 (12), 1827782.https://doi.org/10.1080/15592324.2020.1827782
Article CAS PubMed PubMed Central Google Scholar
Roshchina, V.V. Prizova N.K. and. Khaibulaeva L.M. 2019. Allelopathy experiments with Chara algae model. Histochemical analysis of the participation of neurotransmitter systems in water inhabitation. Allelopathy J. 46 (1), 17–24.
Oleskin A. V., Postnov A. L. 2022. Neurotransmitters as communicative agents in aquatic ecosystems. Moscow Univ. Biol. Sci. Bull. 77 (1), 6–12. https://doi.org/10.3103/S0096392522010035
Oleskin A. V. Postnov A. L., Boyang C. 2021. Impact of biogenic amines on the growth of green microalgae. J. Pharm. Nutr. Sci. 1 (11), 144–150. https://doi.org/10.29169/1927-5951.2021.11.17
Roshchina V.V., Yashin V.A., Podunay Yu.A. 2022. Fluorescence in the study of diatom Ulnaria ulna cells. Austin Environ. Sci. 7 (3), 107–110.
Roshchina V.V., Melnikova E.V., Yashin V.A., Karnaukhov V.N. 2002. Autofluorescence of intact horsetail spores Equisetum arvense L. in the process of their development. Biophysics. 7 (2), 318–324.
Zolotarev V.M. 2012. Application of differentiation in reflection spectroscopy. Optika i spectroscopia (Rus.). 112 (1), 150–154.
Roshchina V.V., Yashin V.A., Kuchin A.V., Kulakov V.I. 2014. Fluorescent analysis of catecholamines and histamine in plant single cells. Int. J. Biochem., Photon. 195, 344–351.
Roshchina V. V., Yashin V. A., Kuchin A. V. 2016. Fluorescence of neurotransmitters and their reception in a plant cell. Biologicheskie membrany (Rus.). 33 (2), 105–112. https://doi.org/10.7868/S0233475516010096
Akulova E.A., Roshchina V.V. 1977. Photosynthetic electron transport at the level of cytochrome f and plastocyanin. Biokhimia (Rus.). 42 (12), 2140–2148.
Roshchina V.V. 2023. Plant leaf surface as a sensory system in allelopathic relations: Role of azulenes. Allelopathy J. 59 (2), 109–122. https://doi.org/10.26651/allele.j/2023-59-2
Roshchina V.V. 2008. Fluorescing world of plant secreting cells. Enfield, Jersey (USA), Plymouth: Science Publisher.
Saleh M.A., Abdel-Moein N.M., Ibrahim, N.A. 1984. Insect antifeeding azulene derivative from the brown alga Dictyota dichotoma. J. Agricultural Food Chem. 32 (6), 1432–1434.
Cano L.P.P., Manfredi R.Q., Perez M., Garcia M., Blustein G., Cordeiro R., Perez C., Schejter L., Palermo J.A. 2018. Isolation and antifouling activity of azulene derivatives from the Antarctic gorgonian Acanthogorgia laxa. Chemistry and Biodiversity. 15, e1700425.
Konovalov D.A. 1995. Natural azulenes. Rastitelnye resursy (Rus.). 31(1), 101–130.
Roshchina V.V., Prizova N.K., Khaibulaeva L.M. 2022. Azulenes of the leaf surface as a protective optical filter. Aktualnye voprosy biologii, fiziki in khimii (Rus.). 7 (1), 36–39.
Bakun P., Czarczynska-Goslinska, B., Goslinski T., Lijewski S. 2021. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med. Chem. Res. 30, 834–46. https://doi.org/10.1007/s00044-021-02701-0
Article CAS PubMed PubMed Central Google Scholar
Murfin L.C., Lewis S.E. 2021. Azulene – a bright core fore sensing and imaging. Molecules. 26 (2), 353–362. https://doi.org/10.3390/molecules26020353
Article CAS PubMed PubMed Central Google Scholar
Roshchina V.V., Konovalov D.A. 2022. Single cell plant model of Equisetum arvense for the study antihistamine effects of azulene and sesquiterpene lactones. Future Pharm. 2 (2), 126–134.
Gao T., Zhang Z., Liu X. et al. 2020. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiol. Biochem. 148, 260–272.
Article CAS PubMed Google Scholar
Jiao C., Lan G., SunY., Wang G., Sun Y. 2021. Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. J. Plant Growth Regul. 40 (1), 277–292. https://doi.org/10.1007/s00344-020-10096-2
Roshchina V.V. 2022. Biogenic amines in plant cell at norma and stress: probes for dopamine and histamine. In: Emerging plant growth regulators in agriculture. Roles in stress tolerance. Naeem M. and Tariq Aftab, Eds. Amsterdam: Elsevier, p. 357–376.
Zhimova N.S., Lyubovtseva L.A., Guryanova E.A., Mulendiev S.V. 2007. Luminescent histochemical study of histamine in skin structures after treatment with hyaluronic acid. Vestnik Orenburgskogo Universiteta (Rus.). 6, 109–117.
Plemenkov V.V., Yanilkin V.V., Paley R.V., Ngo Bakopki B., Morozov V.N., Maksimyuk N.N. 2001. Reactions of single-electron oxidation and reduction of azulene-series sulfides. Zhurnal Organicheskoi Khimii (Rus.). 71 (3), 494–500
Roshchina V.V. 1990. Biomediators in chloroplasts of higher plants. 3. Effect of dopamine on photochemical activity. Photosynthetica. 24 (1), 117–121.
Comments (0)