Stalker DJ, Jungbluth GL (2003) Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 42:1129–1140. https://doi.org/10.2165/00003088-200342130-00004
Article CAS PubMed Google Scholar
Beringer P, Nguyen M, Hoem N et al (2005) Absolute bioavailability and pharmacokinetics of linezolid in hospitalized patients given enteral feedings. Antimicrob Agents Chemother 49(9):3676–3681. https://doi.org/10.1128/AAC.49.9.3676-3681.2005
Article CAS PubMed PubMed Central Google Scholar
Rybak MJ, Hershberger E, Moldovan T, Grucz RG (2000) In vitro activities of daptomycin, Vancomycin, linezolid, and quinupristin-dalfopristin against Staphylococci and Enterococci, including Vancomycin- intermediate and -resistant strains. Antimicrob Agents Chemother 44:1062–1066. https://doi.org/10.1128/AAC.44.4.1062-1066.2000
Article CAS PubMed PubMed Central Google Scholar
Conradie F, Bagdasaryan TR, Borisov S et al (2022) Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N Engl J Med 387:810–823. https://doi.org/10.1056/NEJMoa2119430
Article CAS PubMed PubMed Central Google Scholar
Singh B, Cocker D, Ryan H, Sloan DJ (2019) Linezolid for drug-resistant pulmonary tuberculosis. Cochrane Database Syst Rev 3:CD012836. https://doi.org/10.1002/14651858.CD012836.pub2
Fines M, Leclercq R (2000) Activity of linezolid against Gram-positive cocci possessing genes conferring resistance to protein synthesis inhibitors. J Antimicrob Chemother 45:797–802. https://doi.org/10.1093/jac/45.6.797
Article CAS PubMed Google Scholar
Diekema DJ, Jones RN (2001) Oxazolidinone antibiotics. Lancet 358:1975–1982. https://doi.org/10.1016/S0140-6736(01)06964-1
Article CAS PubMed Google Scholar
Bouza E, Muñoz P (2001) Linezolid: pharmacokinetic characteristics and clinical studies. Clin Microbiol Infect 7:75–82. https://doi.org/10.1046/j.1469-0691.2001.00061.x
Article CAS PubMed Google Scholar
Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42:1411–1423. https://doi.org/10.2165/00003088-200342150-00007
Article CAS PubMed Google Scholar
Heidari S, Khalili H (2023) Linezolid pharmacokinetics: a systematic review for the best clinical practice. Eur J Clin Pharmacol 79:195–206. https://doi.org/10.1007/s00228-022-03446-4
Article CAS PubMed Google Scholar
Abe S, Chiba K, Cirincione B, Grasela TH, Ito K, Suwa T (2009) Population pharmacokinetic analysis of linezolid in patients with infectious disease: application to lower body weight and elderly patients. J Clin Pharmacol 49:1071–1078. https://doi.org/10.1177/0091270009337947
Article CAS PubMed Google Scholar
Komatsu T, Nakamura M, Uchiyama K et al (2022) Initial trough concentration may be beneficial in preventing linezolid-induced thrombocytopenia. J Chemother 34:375–380. https://doi.org/10.1080/1120009X.2022.2043538
Article CAS PubMed Google Scholar
Tinelli M, Gervasoni C, Piazza M et al (2017) Is it time to revise linezolid dose in elderly patients? Eur J Clin Pharmacol 73:1335–1336. https://doi.org/10.1007/s00228-017-2303-6
Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41. https://doi.org/10.1159/000180580
Article CAS PubMed Google Scholar
Andrassy KM (2013) Comments on ‘KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease’. Kidney Int 84:622–623. https://doi.org/10.1038/ki.2013.243
Article CAS PubMed Google Scholar
Twerenbold R, Badertscher P, Boeddinghaus J et al (2018) 0/1-Hour Triage Algorithm for Myocardial Infarction in patients with renal dysfunction. Circulation 137:436–451. https://doi.org/10.1161/CIRCULATIONAHA.117.028901
Article PubMed PubMed Central Google Scholar
Diekema DJ, Jones RN (2001) Oxazolidinone antibiotics. Lancet (London, England) 358:1975–1982. https://doi.org/10.1016/S0140-6736(01)06964-1
Article CAS PubMed Google Scholar
Bandín-Vilar E, García-Quintanilla L, Castro-Balado A et al (2022) A review of Population pharmacokinetic analyses of Linezolid. Clin Pharmacokinet 61:789–817. https://doi.org/10.1007/s40262-022-01125-2
Article CAS PubMed PubMed Central Google Scholar
Crass RL, Cojutti PG, Pai MP, Pea F (2019) Reappraisal of Linezolid Dosing in Renal Impairment to improve Safety. Antimicrob Agents Chemother 63:e00605–e00619. https://doi.org/10.1128/AAC.00605-19
Article CAS PubMed PubMed Central Google Scholar
Sasaki T, Takane H, Ogawa K et al (2011) Population pharmacokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia, in Japanese patients. Antimicrob Agents Chemother 55:1867–1873. https://doi.org/10.1128/AAC.01185-10
Article CAS PubMed PubMed Central Google Scholar
Plock N, Buerger C, Joukhadar C, Kljucar S, Kloft C (2007) Does linezolid inhibit its own metabolism? Population pharmacokinetics as a tool to explain the observed nonlinearity in both healthy volunteers and septic patients. Drug Metab Dispos 35:1816–1823. https://doi.org/10.1124/dmd.106.013755
Article CAS PubMed Google Scholar
Xie F, Mantzarlis K, Malliotakis P et al (2019) Pharmacokinetic evaluation of linezolid administered intravenously in obese patients with pneumonia. J Antimicrob Chemother 74:667–674. https://doi.org/10.1093/jac/dky500
Article CAS PubMed Google Scholar
Roger C, Muller L, Wallis SC et al (2016) Population pharmacokinetics of linezolid in critically ill patients on renal replacement therapy: comparison of equal doses in continuous venovenous haemofiltration and continuous venovenous haemodiafiltration. J Antimicrob Chemother 71:464–470. https://doi.org/10.1093/jac/dkv349
Article CAS PubMed Google Scholar
Souza E, Crass RL, Felton J, Hanaya K, Pai MP (2020) Accumulation of Major Linezolid metabolites in patients with renal impairment. Antimicrob Agents Chemother 64:e00027–e00020. https://doi.org/10.1128/AAC.00027-20
Article CAS PubMed PubMed Central Google Scholar
Ide T, Takesue Y, Ikawa K et al (2018) Population pharmacokinetics/pharmacodynamics of linezolid in snepsis patients with and without continuous renal replacement therapy. Int J Antimicrob Agets 51:745–751. https://doi.org/10.1016/j.ijantimicag.2018.01.021
Mount DB, Kwon CY, Zandi-Nejad K (2006) Renal urate transport. Rheum Dis Clin North Am 32:313–331, vi. https://doi.org/10.1016/j.rdc.2006.02.006
Jalal DI (2016) Hyperuricemia, the kidneys, and the spectrum of associated diseases: a narrative review. Curr Med Res Opin 32:1863–1869. https://doi.org/10.1080/03007995.2016.1218840
Comments (0)