Ai Q, Chen A, Chen K et al (2019) Feature extraction of four-class motor imagery EEG signals based on functional brain network. J Neural Eng 16(2):026032. https://doi.org/10.1088/1741-2552/ab0328
AlSharabi K, Salamah YB, Abdurraqeeb AM et al (2022) EEG signal processing for Alzheimer’s disorders using discrete wavelet transform and machine learning approaches. IEEE Access 10:89781–89797. https://doi.org/10.1109/ACCESS.2022.3198988
Aydore S, Pantazis D, Leahy RM (2013) A note on the phase locking value and its properties. Neuroimage 74:231–244. https://doi.org/10.1016/j.neuroimage.2013.02.008
Bianconi G, Gulbahce N, Motter AE (2008) Local structure of directed networks. Phys Rev Lett 100(11):118701. https://doi.org/10.1103/PhysRevLett.100.118701
Article CAS PubMed Google Scholar
Boord P, Siddall PJ, Tran Y, Herbert D, Middleton J, Craig A (2008) Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 46:118–123. https://doi.org/10.1038/sj.sc.3102077
Article CAS PubMed Google Scholar
Chen Y, Cha YH, Gleghorn D et al (2021) Brain network effects by continuous theta burst stimulation in mal de débarquement syndrome: simultaneous EEG and fMRI study. J Neural Eng 18(6):066025. https://doi.org/10.1088/1741-2552/ac314b
Chowdhury F, Fitzgerald T, Nashef L (2012) EEG phase coupling and network properties are abnormal in idiopathic generalised epilepsy patients and their relatives. J Neurol Neurosurg Psychiatry 83(3):e1–e1. https://doi.org/10.1136/jnnp-2011-301993.87
Cohen MX (2017) Where does EEG come from and what does it mean? Trends Neurosci 40(4):208–218. https://doi.org/10.1016/j.tins.2017.02.004
Article CAS PubMed Google Scholar
Cui ZZ, Li YQ, Huang SS et al (2022) BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training: a pilot study. Cogn Neurodyn 16:1283–1301. https://doi.org/10.1007/s11571-022-09801-6
Article PubMed PubMed Central Google Scholar
Dwi Saputro IR, Maryati ND, Solihati SR et al (2019) Seizure type classification on EEG signal using support vector machine. J Phys Conf Series. 1201(1):012065. https://doi.org/10.1088/1742-6596/1201/1/012065
Elgohary S, Khalil MI, Eldawlatly S (2021) A two-stage classification framework for epileptic seizure prediction using EEG wavelet-based features. Neurology 2021:263–286. https://doi.org/10.1016/B978-0-12-822884-5.00021-0
Fallani F, Babiloni F (2010) Brain network analysis from high-resolution EEG signals. Handbook on Bio Net 2010:217–241. https://doi.org/10.1142/9789812838803_0010
Farahani FV, Karwowski W, Lighthall NR (2019) Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. Front Neurosci 13:585. https://doi.org/10.3389/fnins.2019.00585
Article PubMed PubMed Central Google Scholar
Gao X, Huang W, Liu Y et al (2023) A novel robust Student’s t-based Granger causality for EEG-based brain network analysis. Biomed Signal Process Control 80:104321. https://doi.org/10.1016/j.bspc.2022.104321
Gonuguntla V, Wang Y, Veluvolu K (2013) Phase synchrony in subject-specific reactive band of EEG for classification of motor imagery tasks. Int Conf IEEE Eng Medicine Biol Soc 35:2784–2787. https://doi.org/10.1109/EMBC.2013.6610118
Gu L, Yu Z, Ma T et al (2020) EEG-based classification of lower limb motor imagery with brain network analysis. Neuroscience 436:93–109. https://doi.org/10.1016/j.neuroscience.2020.04.006
Article CAS PubMed Google Scholar
Guo Y, Ge Y, Li J et al (2022) Impact of injury duration on a sensorimotor functional network in complete spinal cord injury. J Neurosci Res 100(9):1765–1774. https://doi.org/10.1002/jnr.25069
Article CAS PubMed PubMed Central Google Scholar
Gupte N, Patel M, Pen T et al (2023) Early detection of ADHD and dyslexia from EEG signals. In: 2023 IEEE 8th international conference for convergence in technology (I2CT) IEEE, pp 1–5. https://doi.org/10.1109/I2CT57861.2023.10126272
Han L, Song X, Li C (2022) Dynamic analysis of epileptic causal brain networks based on directional transfer function. J Biomed Eng = Shengwu Yixue Gongchengxue Zazhi 39(6):1082–1088. https://doi.org/10.7507/1001-5515.202202022
Hawasli AH, Rutlin J, Roland JL et al (2018) Spinal cord injury disrupts resting-state networks in the human brain. J Neurotrauma 35(6):864–873. https://doi.org/10.1089/neu.2017.5212
Article PubMed PubMed Central Google Scholar
Herbert D, Tran Y, Craig A et al (2007) Altered brain wave activity in persons with chronic spinal cord injury. Int J Neurosci 117:1731–1746. https://doi.org/10.1080/00207450701242826
Article CAS PubMed Google Scholar
Heyat MBB, Lai D, Khan FI et al (2019) Sleep bruxism detection using decision tree method by the combination of C4–P4 and C4–A1 channels of scalp EEG. IEEE Access 7:102542–102553. https://doi.org/10.1109/access.2019.2928020
Hosseinifard B, Moradi MH, Rostami R (2013) Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Meth Programs Biomed 109(3):339–345. https://doi.org/10.1016/j.cmpb.2012.10.008
Huang SF, Lin YW (2020) A feature fusion approach for multiple signal classification. In: International Computer Symposium pp 37–42. https://doi.org/10.1109/ics51289.2020.00018
Idowu OP, Ilesanmi AE, Li X et al (2021) An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees. Comput Methods Programs Biomed 206:106121. https://doi.org/10.1016/j.cmpb.2021.106121
Ieracitano C, Morabito FC, Hussain A et al (2021) A hybrid-domain deep learning-based BCI for discriminating hand motion planning from EEG sources. Int J Neural Syst 31(09):2150038. https://doi.org/10.1142/S0129065721500386
Kang H, Nam Y, Choi S (2009) Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Process Lett 16(8):683–686. https://doi.org/10.1109/LSP.2009.2022557
Kim TK (2015) T test as a parametric statistic. Korean J Anesthesiol 68(6):540–546. https://doi.org/10.4097/kjae.2015.68.6.540
Article PubMed PubMed Central Google Scholar
Kim H, Wang IN, Park JS et al (2023) Inherent seizure susceptibility in patients with antihistamine-induced acute symptomatic seizure: a resting-state EEG analysis. Sci Rep 13(1):9146. https://doi.org/10.1038/s41598-023-36415-7
Article CAS PubMed PubMed Central Google Scholar
Kivilcim BB, Ertugrul IO, Yarman Vural FT (2018) Modeling brain networks with artificial neural networks. In: Graphs in biomedical image analysis and integrating medical imaging and non-imaging modalities: second international workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 2. Springer International Publishing pp 43–53. https://doi.org/10.1007/978-3-030-00689-1_5
Kohli V, Tripathi U, Chamola V et al (2022) A review on virtual reality and augmented reality use-cases of brain computer interface based applications for smart cities. Microprocess Microsyst 88:104392. https://doi.org/10.1016/j.micpro.2021.104392
Kwon BK, Bloom O, Wanner IB et al (2019) Neurochemical biomarkers in spinal cord injury. Spinal Cord 57(10):819–831. https://doi.org/10.1038/s41393-019-0319-8
Larson MG (2008) Analysis of variance. Circulation 117(1):115–121. https://doi.org/10.1161/CIRCULATIONAHA.107.654335
Lee DA, Lee HJ, Kim HC et al (2021) Temporal lobe epilepsy with or without hippocampal sclerosis: structural and functional connectivity using advanced MRI techniques. J Neuroimaging 31(5):973–980. https://doi.org/10.1111/jon.12898
Li Y, Wong KM, Debruin H (2009) EEG signal classification based on a Riemannian distance measure. IEEE TIC-STH 2009:268–273. http
Comments (0)