Cannon, J.W. 2018. Hemorrhagic shock. The New England Journal of Medicine 378 (4): 370–379.
Gutierrez, G., H.D. Reines, and M.E. Wulf-Gutierrez. 2004. Clinical review: Hemorrhagic shock. Critical Care (London, England) 8 (5): 373–381.
Wang, L., F. Pei, J. Wu, B. Ouyang, and X. Guan. 2021. Kidney injury in a hemodilution model of hemorrhagic shock and fluid resuscitation. The American Journal of the Medical Sciences 362 (5): 506–511.
Lin, Q., S. Li, N. Jiang, H. Jin, X. Shao, X. Zhu, J. Wu, M. Zhang, Z. Zhang, J. Shen, et al. 2021. Inhibiting nlrp3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of hif1a and bnip3-mediated mitophagy. Autophagy 17 (10): 2975–2990.
Article CAS PubMed Google Scholar
Hou, X., M. Huang, X. Zeng, Y. Zhang, A. Sun, Q. Wu, L. Zhu, H. Zhao, and Y. Liao. 2021. The role of trpc6 in renal ischemia/reperfusion and cellular hypoxia/reoxygenation injuries. Frontiers in Molecular Biosciences 8: 698975.
Article CAS PubMed PubMed Central Google Scholar
Glick, D., S. Barth, and K.F. Macleod. 2010. Autophagy: Cellular and molecular mechanisms. The Journal of Pathology 221 (1): 3–12.
Article CAS PubMed Google Scholar
Klionsky, D.J., G. Petroni, R.K. Amaravadi, E.H. Baehrecke, A. Ballabio, P. Boya, J.M. Bravo-San Pedro, K. Cadwell, F. Cecconi, A. Choi, et al. 2021. Autophagy in major human diseases. The EMBO Journal 40 (19): e108863.
Article CAS PubMed PubMed Central Google Scholar
Sun, M., J. Li, L. Mao, J. Wu, Z. Deng, M. He, S. An, Z. Zeng, Q. Huang, and Z. Chen. 2021. P53 deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy. Frontiers in Immunology 12: 685523.
Article CAS PubMed PubMed Central Google Scholar
Ji, J., X. Zhou, P. Xu, Y. Li, H. Shi, D. Chen, R. Li, and H. Shi. 2019. Deficiency of apoptosis-stimulating protein two of p53 ameliorates acute kidney injury induced by ischemia reperfusion in mice through upregulation of autophagy. Journal of Cellular and Molecular Medicine 23 (4): 2457–2467.
Article CAS PubMed PubMed Central Google Scholar
Lempiäinen, J., P. Finckenberg, E.E. Mervaala, S. Sankari, J. Levijoki, and E.M. Mervaala. 2013. Caloric restriction ameliorates kidney ischaemia/reperfusion injury through pgc-1α-enos pathway and enhanced autophagy. Acta Physiologica (Oxford, England) 208 (4): 410–421.
Chigure, S., I. Yoshitaka, T. Yoshitsugu, T. Hirotaka, K. Masato, S. Masahiro, U. Yasuo, T. Shiro, and I. Enyu. 2008. Participation of autophagy in renal ischemia/reperfusion injury. Biochemical and Biophysical Research Communications 368 (1): 100–6.
Zhao, W., M. Sui, R. Chen, H. Lu, Y. Zhu, L. Zhang, and L. Zeng. 2021. Sirt3 protects kidneys from ischemia-reperfusion injury by modulating the drp1 pathway to induce mitochondrial autophagy. Life Sciences 286: 120005.
Article CAS PubMed Google Scholar
Ishihara, M., M. Urushido, K. Hamada, T. Matsumoto, Y. Shimamura, K. Ogata, K. Inoue, Y. Taniguchi, T. Horino, M. Fujieda, et al. 2013. Sestrin-2 and bnip3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. American journal of physiology. Renal Physiology 305 (4): F495–F509.
Article CAS PubMed Google Scholar
Xu, T., J. Guo, M. Wei, J. Wang, K. Yang, C. Pan, J. Pang, L. Xue, Q. Yuan, M. Xue, et al. 2021. Aldehyde dehydrogenase 2 protects against acute kidney injury by regulating autophagy via the beclin-1 pathway. JCI Insight 6 (15): e138183.
Jiang, M., K. Liu, J. Luo, and Z. Dong. 2010. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. The American Journal of Pathology 176 (3): 1181–1192.
Article CAS PubMed PubMed Central Google Scholar
Bellezza, I., I. Giambanco, A. Minelli, and R. Donato. 2018. Nrf2-keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1865 (5): 721–733.
Article CAS PubMed Google Scholar
Lu, M.C., J.A. Ji, Z.Y. Jiang, and Q.D. You. 2016. The keap1-nrf2-are pathway as a potential preventive and therapeutic target: An update. Medicinal Research Reviews 36 (5): 924–963.
Article CAS PubMed Google Scholar
Shelton, L.M., B.K. Park, and I.M. Copple. 2013. Role of nrf2 in protection against acute kidney injury. Kidney International 84 (6): 1090–1095.
Article CAS PubMed Google Scholar
Shokeir, A.A., N. Barakat, A.M. Hussein, A. Awadalla, A.M. Harraz, S. Khater, K. Hemmaid, and A.I. Kamal. 2015. Activation of nrf2 by ischemic preconditioning and sulforaphane in renal ischemia/reperfusion injury: A comparative experimental study. Physiological Research 64 (3): 313–323.
Article CAS PubMed Google Scholar
Russo, M., C. Spagnuolo, G.L. Russo, K. Skalicka-Woźniak, M. Daglia, E. Sobarzo-Sánchez, S.F. Nabavi, and S.M. Nabavi. 2018. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition 58 (8): 1391–1405.
Article CAS PubMed Google Scholar
Yang, P.M., K.C. Cheng, J.Y. Huang, S.Y. Wang, Y.N. Lin, Y.T. Tseng, C.W. Hsieh, and B.S. Wung. 2021. Sulforaphane inhibits blue light-induced inflammation and apoptosis by upregulating the sirt1/pgc-1α/nrf2 pathway and autophagy in retinal pigment epithelial cells. Toxicology and Applied Pharmacology 421: 115545.
Article CAS PubMed Google Scholar
Lee, J.H., J.K. Jeong, and S.Y. Park. 2014. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through ampk pathway. Neuroscience 278: 31–39.
Article CAS PubMed Google Scholar
Weiqiang, L., G. Johannes, F. Athanassios, H. Klemens, B. Felix, W. Christoph, P. Thomas, K. Philipp, H. Frank, and L. Philipp. 2021. Sulforaphane-dependent up-regulation of nrf2 activity alleviates both systemic inflammatory response and lung injury after hemorrhagic shock/resuscitation in mice. Shock 57 (2): 221–229.
Weiqiang, L., G. Johannes, Q. Kang, F. Athanassios, H. Klemens, B. Felix, W. Christoph, P. Thomas, K. Philipp, H. Frank, et al. 2022. Sulforaphane exerts beneficial immunomodulatory effects on liver tissue via a nrf2 pathway-related mechanism in a murine model of hemorrhagic shock and resuscitation. Frontiers in Immunology 13: 822895.
Tianjie, Q., X. Fei, Y. Xixin, L. Shuai, and L. Haitao. 2015. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the nrf2/are pathway. International Journal of Molecular Medicine 37 (1): 182–8.
Paller, M.S., J.R. Hoidal, and T.F. Ferris. 1984. Oxygen free radicals in ischemic acute renal failure in the rat. The Journal of Clinical Investigation 74 (4): 1156–1164.
Article CAS PubMed PubMed Central Google Scholar
Arimori, Y., T. Takahashi, H. Nishie, K. Inoue, H. Shimizu, E. Omori, S. Kawanishi, Y. Toda, H. Morimatsu, and K. Morita. 2010. Role of heme oxygenase-1 in protection of the kidney after hemorrhagic shock. International Journal of Molecular Medicine 26 (1): 27–32.
Santín-Márquez, R., A. Alarcón-Aguilar, N.E. López-Diazguerrero, N. Chondrogianni, and M. Königsberg. 2019. Sulforaphane - role in aging and neurodegeneration. Geroscience 41 (5): 655–670.
Article PubMed PubMed Central Google Scholar
Canto, A., J. Martínez-González, M. Miranda, T. Olivar, I. Almansa, and V. Hernández-Rabaza. 2022. Sulforaphane modulates the inflammation and delays neurodegeneration on a retinitis pigmentosa mice model. Frontiers in Pharmacology 13: 811257.
Article CAS PubMed PubMed Central Google Scholar
Hariton, F., M. Xue, N. Rabbani, M. Fowler, and P.J. Thornalley. 2018. Sulforaphane delays fibroblast senescence by curbing cellular glucose uptake, increased glycolysis, and oxidative damage. Oxidative Medicine and Cellular Longevity 2018: 5642148.
Article PubMed PubMed Central Google Scholar
Lukas, G., S.D. Brindle, and P. Greengard. 1971. The route of absorption of intraperitoneally administered compounds. The Journal of Pharmacology and Experimental Therapeutics 178 (3): 562–4.
Karmakova, Т.А., N.S. Sergeeva, К.Y. Kanukoev, B.Y. Alekseev, and А.D. Kaprin. 2021. Kidney injury molecule 1 (kim-1): A multifunctional glycoprotein and biological marker (review). Sovremennye Tekhnologii V Meditsine 13 (3): 64–78.
Rong, S., J.K. Park, T. Kirsch, H. Yagita, H. Akiba, O. Boenisch, H. Haller, N. Najafian, and A. Habicht. 2011. The tim-1:Tim-4 pathway enhances renal ischemia-reperfusion injury. Journal of the American Society of Nephrology 22 (3): 484–495.
Article CAS PubMed PubMed Central Google Scholar
Mori, Y., A.K. Ajay, J.H. Chang, S. Mou, H. Zhao, S. Kishi, J. Li, C.R. Brooks, S. Xiao, H.M. Woo, et al. 2021. Kim-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metabolism 33 (5): 1042–1061.
Comments (0)