Kidney Injury in a Murine Hemorrhagic Shock/Resuscitation Model Is Alleviated by sulforaphane’s Anti-Inflammatory and Antioxidant Action

Cannon, J.W. 2018. Hemorrhagic shock. The New England Journal of Medicine 378 (4): 370–379.

Article  PubMed  Google Scholar 

Gutierrez, G., H.D. Reines, and M.E. Wulf-Gutierrez. 2004. Clinical review: Hemorrhagic shock. Critical Care (London, England) 8 (5): 373–381.

Article  PubMed  Google Scholar 

Wang, L., F. Pei, J. Wu, B. Ouyang, and X. Guan. 2021. Kidney injury in a hemodilution model of hemorrhagic shock and fluid resuscitation. The American Journal of the Medical Sciences 362 (5): 506–511.

Article  PubMed  Google Scholar 

Lin, Q., S. Li, N. Jiang, H. Jin, X. Shao, X. Zhu, J. Wu, M. Zhang, Z. Zhang, J. Shen, et al. 2021. Inhibiting nlrp3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of hif1a and bnip3-mediated mitophagy. Autophagy 17 (10): 2975–2990.

Article  CAS  PubMed  Google Scholar 

Hou, X., M. Huang, X. Zeng, Y. Zhang, A. Sun, Q. Wu, L. Zhu, H. Zhao, and Y. Liao. 2021. The role of trpc6 in renal ischemia/reperfusion and cellular hypoxia/reoxygenation injuries. Frontiers in Molecular Biosciences 8: 698975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glick, D., S. Barth, and K.F. Macleod. 2010. Autophagy: Cellular and molecular mechanisms. The Journal of Pathology 221 (1): 3–12.

Article  CAS  PubMed  Google Scholar 

Klionsky, D.J., G. Petroni, R.K. Amaravadi, E.H. Baehrecke, A. Ballabio, P. Boya, J.M. Bravo-San Pedro, K. Cadwell, F. Cecconi, A. Choi, et al. 2021. Autophagy in major human diseases. The EMBO Journal 40 (19): e108863.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, M., J. Li, L. Mao, J. Wu, Z. Deng, M. He, S. An, Z. Zeng, Q. Huang, and Z. Chen. 2021. P53 deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy. Frontiers in Immunology 12: 685523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji, J., X. Zhou, P. Xu, Y. Li, H. Shi, D. Chen, R. Li, and H. Shi. 2019. Deficiency of apoptosis-stimulating protein two of p53 ameliorates acute kidney injury induced by ischemia reperfusion in mice through upregulation of autophagy. Journal of Cellular and Molecular Medicine 23 (4): 2457–2467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lempiäinen, J., P. Finckenberg, E.E. Mervaala, S. Sankari, J. Levijoki, and E.M. Mervaala. 2013. Caloric restriction ameliorates kidney ischaemia/reperfusion injury through pgc-1α-enos pathway and enhanced autophagy. Acta Physiologica (Oxford, England) 208 (4): 410–421.

Article  PubMed  Google Scholar 

Chigure, S., I. Yoshitaka, T. Yoshitsugu, T. Hirotaka, K. Masato, S. Masahiro, U. Yasuo, T. Shiro, and I. Enyu. 2008. Participation of autophagy in renal ischemia/reperfusion injury. Biochemical and Biophysical Research Communications 368 (1): 100–6.

Zhao, W., M. Sui, R. Chen, H. Lu, Y. Zhu, L. Zhang, and L. Zeng. 2021. Sirt3 protects kidneys from ischemia-reperfusion injury by modulating the drp1 pathway to induce mitochondrial autophagy. Life Sciences 286: 120005.

Article  CAS  PubMed  Google Scholar 

Ishihara, M., M. Urushido, K. Hamada, T. Matsumoto, Y. Shimamura, K. Ogata, K. Inoue, Y. Taniguchi, T. Horino, M. Fujieda, et al. 2013. Sestrin-2 and bnip3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. American journal of physiology. Renal Physiology 305 (4): F495–F509.

Article  CAS  PubMed  Google Scholar 

Xu, T., J. Guo, M. Wei, J. Wang, K. Yang, C. Pan, J. Pang, L. Xue, Q. Yuan, M. Xue, et al. 2021. Aldehyde dehydrogenase 2 protects against acute kidney injury by regulating autophagy via the beclin-1 pathway. JCI Insight 6 (15): e138183.

Jiang, M., K. Liu, J. Luo, and Z. Dong. 2010. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. The American Journal of Pathology 176 (3): 1181–1192.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellezza, I., I. Giambanco, A. Minelli, and R. Donato. 2018. Nrf2-keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1865 (5): 721–733.

Article  CAS  PubMed  Google Scholar 

Lu, M.C., J.A. Ji, Z.Y. Jiang, and Q.D. You. 2016. The keap1-nrf2-are pathway as a potential preventive and therapeutic target: An update. Medicinal Research Reviews 36 (5): 924–963.

Article  CAS  PubMed  Google Scholar 

Shelton, L.M., B.K. Park, and I.M. Copple. 2013. Role of nrf2 in protection against acute kidney injury. Kidney International 84 (6): 1090–1095.

Article  CAS  PubMed  Google Scholar 

Shokeir, A.A., N. Barakat, A.M. Hussein, A. Awadalla, A.M. Harraz, S. Khater, K. Hemmaid, and A.I. Kamal. 2015. Activation of nrf2 by ischemic preconditioning and sulforaphane in renal ischemia/reperfusion injury: A comparative experimental study. Physiological Research 64 (3): 313–323.

Article  CAS  PubMed  Google Scholar 

Russo, M., C. Spagnuolo, G.L. Russo, K. Skalicka-Woźniak, M. Daglia, E. Sobarzo-Sánchez, S.F. Nabavi, and S.M. Nabavi. 2018. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Critical Reviews in Food Science and Nutrition 58 (8): 1391–1405.

Article  CAS  PubMed  Google Scholar 

Yang, P.M., K.C. Cheng, J.Y. Huang, S.Y. Wang, Y.N. Lin, Y.T. Tseng, C.W. Hsieh, and B.S. Wung. 2021. Sulforaphane inhibits blue light-induced inflammation and apoptosis by upregulating the sirt1/pgc-1α/nrf2 pathway and autophagy in retinal pigment epithelial cells. Toxicology and Applied Pharmacology 421: 115545.

Article  CAS  PubMed  Google Scholar 

Lee, J.H., J.K. Jeong, and S.Y. Park. 2014. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through ampk pathway. Neuroscience 278: 31–39.

Article  CAS  PubMed  Google Scholar 

Weiqiang, L., G. Johannes, F. Athanassios, H. Klemens, B. Felix, W. Christoph, P. Thomas, K. Philipp, H. Frank, and L. Philipp. 2021. Sulforaphane-dependent up-regulation of nrf2 activity alleviates both systemic inflammatory response and lung injury after hemorrhagic shock/resuscitation in mice. Shock 57 (2): 221–229.

Weiqiang, L., G. Johannes, Q. Kang, F. Athanassios, H. Klemens, B. Felix, W. Christoph, P. Thomas, K. Philipp, H. Frank, et al. 2022. Sulforaphane exerts beneficial immunomodulatory effects on liver tissue via a nrf2 pathway-related mechanism in a murine model of hemorrhagic shock and resuscitation. Frontiers in Immunology 13: 822895.

Tianjie, Q., X. Fei, Y. Xixin, L. Shuai, and L. Haitao. 2015. Sulforaphane exerts anti-inflammatory effects against lipopolysaccharide-induced acute lung injury in mice through the nrf2/are pathway. International Journal of Molecular Medicine 37 (1): 182–8.

Paller, M.S., J.R. Hoidal, and T.F. Ferris. 1984. Oxygen free radicals in ischemic acute renal failure in the rat. The Journal of Clinical Investigation 74 (4): 1156–1164.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arimori, Y., T. Takahashi, H. Nishie, K. Inoue, H. Shimizu, E. Omori, S. Kawanishi, Y. Toda, H. Morimatsu, and K. Morita. 2010. Role of heme oxygenase-1 in protection of the kidney after hemorrhagic shock. International Journal of Molecular Medicine 26 (1): 27–32.

CAS  PubMed  Google Scholar 

Santín-Márquez, R., A. Alarcón-Aguilar, N.E. López-Diazguerrero, N. Chondrogianni, and M. Königsberg. 2019. Sulforaphane - role in aging and neurodegeneration. Geroscience 41 (5): 655–670.

Article  PubMed  PubMed Central  Google Scholar 

Canto, A., J. Martínez-González, M. Miranda, T. Olivar, I. Almansa, and V. Hernández-Rabaza. 2022. Sulforaphane modulates the inflammation and delays neurodegeneration on a retinitis pigmentosa mice model. Frontiers in Pharmacology 13: 811257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hariton, F., M. Xue, N. Rabbani, M. Fowler, and P.J. Thornalley. 2018. Sulforaphane delays fibroblast senescence by curbing cellular glucose uptake, increased glycolysis, and oxidative damage. Oxidative Medicine and Cellular Longevity 2018: 5642148.

Article  PubMed  PubMed Central  Google Scholar 

Lukas, G., S.D. Brindle, and P. Greengard. 1971. The route of absorption of intraperitoneally administered compounds. The Journal of Pharmacology and Experimental Therapeutics 178 (3): 562–4.

Karmakova, Т.А., N.S. Sergeeva, К.Y. Kanukoev, B.Y. Alekseev, and А.D. Kaprin. 2021. Kidney injury molecule 1 (kim-1): A multifunctional glycoprotein and biological marker (review). Sovremennye Tekhnologii V Meditsine 13 (3): 64–78.

Article  PubMed  Google Scholar 

Rong, S., J.K. Park, T. Kirsch, H. Yagita, H. Akiba, O. Boenisch, H. Haller, N. Najafian, and A. Habicht. 2011. The tim-1:Tim-4 pathway enhances renal ischemia-reperfusion injury. Journal of the American Society of Nephrology 22 (3): 484–495.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mori, Y., A.K. Ajay, J.H. Chang, S. Mou, H. Zhao, S. Kishi, J. Li, C.R. Brooks, S. Xiao, H.M. Woo, et al. 2021. Kim-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metabolism 33 (5): 1042–1061.

Article 

Comments (0)

No login
gif