The impact of image contrast, resolution and reader expertise on black hole identification in Multiple Sclerosis

Barkhof F, McGowan JC, van Waesberghe JH, Grossman RI (1998) Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J Neurol Neurosurg Psychiatry 64(Suppl 1):S77-79

PubMed  Google Scholar 

Bitsch A, Kuhlmann T, Stadelmann C et al (2001) A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions: Longitudinal Study of Hypointense T1 Lesions. Ann Neurol 49:793–796. https://doi.org/10.1002/ana.1053

Article  CAS  PubMed  Google Scholar 

van Walderveen MAA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288. https://doi.org/10.1212/WNL.50.5.1282

Article  PubMed  Google Scholar 

Alessandrino F, Pichiecchio A, Mallucci G et al (2018) Do MRI Structured Reports for Multiple Sclerosis Contain Adequate Information for Clinical Decision Making? Am J Roentgenol 210:24–29. https://doi.org/10.2214/AJR.17.18451

Article  Google Scholar 

ASNR (2018) Neuroradiology CDE Distribution Supporting Documentation https://www.asnr.org/wp-content/uploads/cde/ASNR%202018%20CDE%20Distribution%20Supporting%20Documentation.pdf

Siger M (2022) Magnetic Resonance Imaging in Primary Progressive Multiple Sclerosis Patients: Review. Clin Neuroradiol 32:625–641. https://doi.org/10.1007/s00062-022-01144-3

Article  PubMed  PubMed Central  Google Scholar 

Sahraian MA, Radue E-W, Haller S, Kappos L (2009) Black holes in multiple sclerosis: definition, evolution, and clinical correlations: Black holes in MS. Acta Neurol Scand 122:1–8. https://doi.org/10.1111/j.1600-0404.2009.01221.x

Article  PubMed  Google Scholar 

Arnold DL, Matthews PM (2002) MRI in the diagnosis and management of multiple sclerosis. Neurology 58:S23–S31. https://doi.org/10.1212/WNL.58.8_suppl_4.S23

Article  PubMed  Google Scholar 

Bagnato F (2003) Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 126:1782–1789. https://doi.org/10.1093/brain/awg182

Article  PubMed  Google Scholar 

Filippi M, Preziosa P, Barkhof F et al (2021) Diagnosis of Progressive Multiple Sclerosis From the Imaging Perspective: A Review. JAMA Neurol 78:351. https://doi.org/10.1001/jamaneurol.2020.4689

Article  PubMed  Google Scholar 

Filippi M, Rovaris M, Rocca MA et al (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes.” Neurology 57:731–733. https://doi.org/10.1212/WNL.57.4.731

Article  CAS  PubMed  Google Scholar 

van Waesberghe JH, van Walderveen MA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol 19:675–683

PubMed  PubMed Central  Google Scholar 

Wattjes MP, Ciccarelli O, Reich DS et al (2021) 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20:653–670. https://doi.org/10.1016/S1474-4422(21)00095-8

Article  PubMed  Google Scholar 

Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology 182:769–775. https://doi.org/10.1148/radiology.182.3.1535892

Article  CAS  PubMed  Google Scholar 

Dupuy SL, Tauhid S, Kim G et al (2015) MRI detection of hypointense brain lesions in patients with multiple sclerosis: T1 spin-echo vs. gradient-echo. Eur J Radiol 84:1564–1568. https://doi.org/10.1016/j.ejrad.2015.05.004

Article  PubMed  Google Scholar 

Lapucci C, Romano N, Schiavi S et al (2020) Degree of microstructural changes within T1-SE versus T1-GE hypointense lesions in multiple sclerosis: relevance for the definition of “black holes.” Eur Radiol 30:3843–3851. https://doi.org/10.1007/s00330-020-06761-5

Article  CAS  PubMed  Google Scholar 

Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

Article  PubMed  Google Scholar 

Lublin FD, Reingold SC, Cohen JA et al (2014) Defining the clinical course of multiple sclerosis. Neurology 83:278–286. https://doi.org/10.1212/WNL.0000000000000560

Article  PubMed  PubMed Central  Google Scholar 

Fazekas F (2000) Apolipoprotein E genotype related differences in brain lesions of multiple sclerosis. J Neurol Neurosurg Psychiatry 69:25–28. https://doi.org/10.1136/jnnp.69.1.25

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Article  PubMed  PubMed Central  Google Scholar 

Hu XY, Rajendran L, Lapointe E et al (2019) Three-dimensional MRI sequences in MS diagnosis and research. Mult Scler 25:1700–1709. https://doi.org/10.1177/1352458519848100

Article  PubMed  Google Scholar 

McKinley R, Wepfer R, Aschwanden F et al (2021) Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Sci Rep 11:1087. https://doi.org/10.1038/s41598-020-79925-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozsik B, Tóth E, Polyák I et al (2022) Reproducibility of Lesion Count in Various Subregions on MRI Scans in Multiple Sclerosis. Front Neurol 13:843377. https://doi.org/10.3389/fneur.2022.843377

Article  PubMed  PubMed Central  Google Scholar 

Traboulsee A, Simon JH, Stone L et al (2016) Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 37:394–401. https://doi.org/10.3174/ajnr.A4539

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiavi S, Petracca M, Sun P et al (2021) Non-invasive quantification of inflammation, axonal and myelin injury in multiple sclerosis. Brain 144:213–223. https://doi.org/10.1093/brain/awaa381

Article  PubMed  Google Scholar 

Truyen L, Van Waesberghe JHTM, Van Walderveen MAA et al (1996) Accumulation of hypointense lesions (“black holes”) on T 1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47:1469–1476. https://doi.org/10.1212/WNL.47.6.1469

Article  CAS  PubMed  Google Scholar 

Schick F, Pieper CC, Kupczyk P et al (2021) 1.5 vs 3 Tesla Magnetic Resonance Imaging: A Review of Favorite Clinical Applications for Both Field Strengths-Part 1. Invest Radiol 56:680–691. https://doi.org/10.1097/RLI.0000000000000812

Article  PubMed  Google Scholar 

Shinohara RT, Oh J, Nair G et al (2017) Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis. AJNR Am J Neuroradiol 38:1501–1509. https://doi.org/10.3174/ajnr.A5254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif