Reinshagen KL, Curtin HD, Quesnel AM, Juliano AF (2017) Measurement for detection of incomplete partition type II anomalies on MR imaging. AJNR Am J Neuroradiol 38:2003–2007. https://doi.org/10.3174/ajnr.A5335
Article CAS PubMed PubMed Central Google Scholar
Leung KJ, Quesnel AM, Juliano AF, Curtin HD (2016) Correlation of CT, MR, and histopathology in incomplete Partition-II cochlear anomaly. Otol Neurotol 37:434–437. https://doi.org/10.1097/MAO.0000000000001027
Makary C, Shin J, Caruso P et al (2010) A histological study of scala communis with radiological implications. Audiol Neurootol 15:383–393. https://doi.org/10.1159/000307345
Article PubMed PubMed Central Google Scholar
Sennaroğlu L, Bajin MD (2017) Classification and current management of inner ear malformations. Balkan Med J 34:397–411. https://doi.org/10.4274/balkanmedj.2017.0367
Article PubMed PubMed Central Google Scholar
Som PM, Curtin HD, Liu K, Mafee MF (2016) Current embryology of the temporal bone, part I: the inner ear. Neurograph 6:250–265. https://doi.org/10.3174/ng.4160166
Talenti G, Manara R, Brotto D, D’Arco F (2018) High-resolution 3 T magnetic resonance findings in cochlear hypoplasias and incomplete partition anomalies: a pictorial essay. Br J Radiol 91:20180120. https://doi.org/10.1259/bjr.20180120
Özbal Batuk M, Çınar BÇ, Özgen B et al (2017) Audiological and radiological characteristics in incomplete partition malformations. J Int Adv Otol 13:233–238. https://doi.org/10.5152/iao.2017.3030
D’Arco F, Sanverdi E, O’Brien WT et al (2020) The link between inner ear malformations and the rest of the body: what we know so far about genetic, imaging and histology. Neuroradiology 62:539–544. https://doi.org/10.1007/s00234-020-02382-3
Sennaroglu L (2016) Histopathology of inner ear malformations: do we have enough evidence to explain pathophysiology? Cochlear Implants Int 17:3–20. https://doi.org/10.1179/1754762815Y.0000000016
D’Arco F, Youssef A, Ioannidou E et al (2020) Temporal bone and intracranial abnormalities in syndromic causes of hearing loss: an updated guide. Eur J Radiol 123:108803. https://doi.org/10.1016/j.ejrad.2019.108803
Lewis M, Robson CD, D’Arco F (2023) Syndromic hearing loss in children. Neuroimaging Clin N Am 33:563–580. https://doi.org/10.1016/j.nic.2023.05.007
Reardon W, OMahoney CF, Trembath R et al (2000) Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene. QJM 93:99–104. https://doi.org/10.1093/qjmed/93.2.99
Article CAS PubMed Google Scholar
Jan TA, Cheng AG, Jackler RK (2021) Congenital malformations of the inner ear. Cummings Pediatric Otolaryngology. Elsevier, pp 177–200
Smith RJ (1993) Pendred syndrome/nonsyndromic enlarged vestibular aqueduct. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews(®). University of Washington, Seattle, Seattle (WA)
Enerbäck S, Nilsson D, Edwards N et al (2018) Acidosis and deafness in patients with recessive mutations in FOXI1. J Am Soc Nephrol 29:1041–1048. https://doi.org/10.1681/ASN.2017080840
Booth TN, Wick C, Clarke R et al (2018) Evaluation of the normal Cochlear Second Interscalar Ridge Angle and depth on 3D T2-Weighted images: a Tool for the diagnosis of Scala Communis and Incomplete partition type II. AJNR Am J Neuroradiol 39:923–927. https://doi.org/10.3174/ajnr.A5585
Article CAS PubMed PubMed Central Google Scholar
Juliano AF, Ting EY, Mingkwansook V et al (2016) Vestibular aqueduct measurements in the 45° oblique (pöschl) plane. AJNR Am J Neuroradiol 37:1331–1337. https://doi.org/10.3174/ajnr.A4735
Article CAS PubMed PubMed Central Google Scholar
Clarke RL, Isaacson B, Kutz JW et al (2021) MRI evaluation of the normal and abnormal endolymphatic Duct in the Pediatric Population: a comparison with high-resolution CT. AJNR Am J Neuroradiol 42:1865–1869. https://doi.org/10.3174/ajnr.A7224
Article CAS PubMed PubMed Central Google Scholar
D’Arco F, Talenti G, Lakshmanan R et al (2017) Do measurements of inner ear structures help in the diagnosis of inner ear malformations? A review of literature. Otol Neurotol 38:e384–e392. https://doi.org/10.1097/MAO.0000000000001604
Blaser S, Propst EJ, Martin D et al (2006) Inner ear dysplasia is common in children with Down syndrome (trisomy 21). Laryngoscope 116:2113–2119. https://doi.org/10.1097/01.mlg.0000245034.77640.4f
Saihan Z, Webster AR, Luxon L, Bitner-Glindzicz M (2009) Update on Usher syndrome. Curr Opin Neurol 22:19–27. https://doi.org/10.1097/WCO.0b013e3283218807
Zhou G, Gopen Q, Kenna MA (2008) Delineating the hearing loss in children with enlarged vestibular aqueduct. Laryngoscope 118:2062–2066. https://doi.org/10.1097/MLG.0b013e31818208ad
Archibald HD, Ascha M, Gupta A et al (2019) Hearing loss in unilateral and bilateral enlarged vestibular aqueduct syndrome. Int J Pediatr Otorhinolaryngol 118:147–151. https://doi.org/10.1016/j.ijporl.2018.12.023
Forli F, Lazzerini F, Auletta G et al (2021) Enlarged vestibular aqueduct and Mondini Malformation: audiological, clinical, radiologic and genetic features. Eur Arch Otorhinolaryngol 278:2305–2312. https://doi.org/10.1007/s00405-020-06333-9
Article CAS PubMed Google Scholar
Kontorinis G, Goetz F, Giourgas A et al (2012) Radiological diagnosis of incomplete partition type I versus type II: significance for cochlear implantation. Eur Radiol 22:525–532. https://doi.org/10.1007/s00330-011-2301-5
Ahadizadeh E, Ascha M, Manzoor N et al (2017) Hearing loss in enlarged vestibular aqueduct and incomplete partition type II. Am J Otolaryngol 38:692–697. https://doi.org/10.1016/j.amjoto.2017.06.010
Mey K, Muhamad AA, Tranebjaerg L et al (2019) Association of SLC26A4 mutations, morphology, and hearing in pendred syndrome and NSEVA. Laryngoscope 129:2574–2579. https://doi.org/10.1002/lary.27319
Article CAS PubMed Google Scholar
King KA, Choi BY, Zalewski C et al (2010) SLC26A4 genotype, but not cochlear radiologic structure, is correlated with hearing loss in ears with an enlarged vestibular aqueduct. Laryngoscope 120:384–389. https://doi.org/10.1002/lary.20722
Article CAS PubMed PubMed Central Google Scholar
Landa P, Differ A-M, Rajput K et al (2013) Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged vestibular aqueducts. BMC Med Genet 14:85. https://doi.org/10.1186/1471-2350-14-85
Article CAS PubMed PubMed Central Google Scholar
Everett LA, Belyantseva IA, Noben-Trauth K et al (2001) Targeted disruption of mouse pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161. https://doi.org/10.1093/hmg/10.2.153
Article CAS PubMed Google Scholar
Tesolin P, Fiorino S, Lenarduzzi S et al (2021) Pendred syndrome, or not pendred syndrome? That is the question. Genes 12. https://doi.org/10.3390/genes12101569
Huebner AK, Gandia M, Frommolt P et al (2011) Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am J Hum Genet 88:621–627.
Comments (0)