We compared different LLMs, notably chatGPT, GPT4, and Google Bard and we tested whether their performance differs in subspeciality domains, in executing examinations from four different courses of the European Society of Neuroradiology (ESNR) notably anatomy/embryology, neuro-oncology, head and neck and pediatrics. Written exams of ESNR were used as input data, related to anatomy/embryology (30 questions), neuro-oncology (50 questions), head and neck (50 questions), and pediatrics (50 questions). All exams together, and each exam separately were introduced to the three LLMs: chatGPT 3.5, GPT4, and Google Bard. Statistical analyses included a group-wise Friedman test followed by a pair-wise Wilcoxon test with multiple comparison corrections. Overall, there was a significant difference between the 3 LLMs (p < 0.0001), with GPT4 having the highest accuracy (70%), followed by chatGPT 3.5 (54%) and Google Bard (36%). The pair-wise comparison showed significant differences between chatGPT vs GPT 4 (p < 0.0001), chatGPT vs Bard (p < 0. 0023), and GPT4 vs Bard (p < 0.0001). Analyses per subspecialty showed the highest difference between the best LLM (GPT4, 70%) versus the worst LLM (Google Bard, 24%) in the head and neck exam, while the difference was least pronounced in neuro-oncology (GPT4, 62% vs Google Bard, 48%). We observed significant differences in the performance of the three different LLMs in the running of official exams organized by ESNR. Overall GPT 4 performed best, and Google Bard performed worst. This difference varied depending on subspeciality and was most pronounced in head and neck subspeciality.
Comments (0)