Antibacterial activity of gallic acid and methyl gallate against emerging non-fermenting bacilli

Ahn YJ, Lee CO, Kweon JH, Ahn JW, Park JH (1998) Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J App Microbiol 84:439–443. https://doi.org/10.1046/j.1365-2672.1998.00363.x

Article  CAS  Google Scholar 

Bag PK, Roy N, Acharyya S, Saha DR, Koley H, Sarkar P, Bhowmik P (2019) In vivo fluid accumulation-inhibitory, anticolonization and anti-inflammatory and in vitro biofilm-inhibitory activities of methyl gallate isolated from Terminalia chebula against fluoroquinolones resistant Vibrio cholerae. Microb Pathog 128:41–46. https://doi.org/10.1016/j.micpath.2018.12.037

Article  CAS  PubMed  Google Scholar 

Birhanu BT, Lee EB, Park SC (2020) Evaluation of the pharmacokinetic-pharmacodynamic integration of marbofloxacin in combination with methyl gallate against Salmonella Typhimurium in rats. PLoS ONE 15:e0234211. https://doi.org/10.1371/journal.pone.0234211

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bostanghadiri N, Ardebili A, Ghalavand Z, Teymouri S, Mirzarazi M, Goudarzi M, Ghasemi E, Hashemi A (2021) Antibiotic resistance, biofilm formation, and biofilm-associated genes among Stenotrophomonas maltophilia clinical isolates. BMC Res Notes 14:151. https://doi.org/10.1186/s13104-021-05567-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi JG, Kang OH, Lee YS, Oh YC, Chae HS, Jang HJ, Shin DW, Kwon DY (2009) Antibacterial activity of methyl gallate isolated from Galla rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules 14:5. https://doi.org/10.3390/molecules14051773

Article  CAS  Google Scholar 

Choi JG, Mun SH, Chahar HS, Bharaj P, Kang OH, Kim SG, Shin DW, Kwon DY (2014) Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems. PLoS ONE 9:e102697. https://doi.org/10.1371/journal.pone.0102697

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Ninth Edition; Document M07–A9. Clinical and Laboratory Standards Institute, Wayne, PA

Google Scholar 

Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; 23rd Informational supplement M100–S23. Clinical & Laboratory Standards Institute, Wayne, PA

Google Scholar 

Dávila-Aviña J, Gil-Solís C, Merino-Mascorro J, García S, Heredia N (2020) Phenolics with bactericidal activity alter motility and biofilm formation in enterotoxigenic, enteropathogenic, and enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 17:568–575. https://doi.org/10.1089/fpd.2019.2766

Article  CAS  PubMed  Google Scholar 

Díaz-Gómez R, López-Solís R, Obreque-Slier E, Toledo-Araya H (2013) Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT-Food Sci Technol 54:331–335. https://doi.org/10.1016/j.lwt.2013.07.012

Article  CAS  Google Scholar 

Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, Heeg P, Ilschner C, Kramer A, Larson E, Merkens W, Mielke M, Oltmanns P, Ross B, Rotter M, Schmithausen RM, Sonntag HG, Trautmann M (2017) Antibiotic resistance: what is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control 12:05. https://doi.org/10.3205/dgkh000290

Article  Google Scholar 

García-Hernández C, Rojo-Rubio R, Gives PM, González-Cortazar M, Zamilpa A, Mondragón-Ancelmo J, Villa-Mancera A, Olivares-Pérez J, Tapia-Maruri D, Olmedo-Juárez A (2022) In vitro and in vivo anthelmintic properties of Caesalpinia coriaria fruits against Haemonchus contortus. Exp Parasitol 242:108401. https://doi.org/10.1016/j.exppara.2022.108401

Article  CAS  PubMed  Google Scholar 

Hafiz TA, Aldawood E, Albloshi A, Alghamdi SS, Mubaraki MA, Alyami AS, Aldriwesh MG (2022) Stenotrophomonas maltophilia Epidemiology, resistance characteristics, and clinical outcomes: understanding of the recent three years’ trends. Microorganisms 10:2506. https://doi.org/10.3390/microorganisms10122506

Article  PubMed  PubMed Central  Google Scholar 

Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R, Saam M, Van Belkum A, Pittet D, For the world healthcare-associated infections resistance forum participants (2015) Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control 4:49. https://doi.org/10.1186/s13756-015-0091-2

Article  PubMed Central  Google Scholar 

Hossain MA, Park HC, Park SW, Park SC, Seo MG, Her M, Kang J (2020) Synergism of the combination of traditional antibiotics and novel phenolic compounds against Escherichia coli. Pathogens 9:811. https://doi.org/10.3390/pathogens9100811

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL (2020) Achromobacter infections and treatment options. Antimicrob Agents Chemother 64:e01025–e1120. https://doi.org/10.1128/AAC.01025-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang J, Liu L, Liu M, Wu X, Li J (2018) Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control 94:147–154. https://doi.org/10.1016/j.foodcont.2018.07.011

Article  CAS  Google Scholar 

Kang MS, Oh JS, Kang IC, Hong SJ, Choi CH (2008) Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol 46:744–750. https://doi.org/10.1007/s12275-008-0235-7

Article  CAS  PubMed  Google Scholar 

Li ZJ, Liu M, Dawuti G, Dou Q, Ma Y, Liu HG, Aibai S (2017) Antifungal activity of gallic acid in vitro and in vivo. Phytother Res 31:1039–1045. https://doi.org/10.1002/ptr.5823

Article  CAS  PubMed  Google Scholar 

Lima MC, Paiva de Sousa C, Fernandez-Prada C, Harel J, Dubreuil JD, de Souza EL (2019) A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb Pathog 130:259–270. https://doi.org/10.1016/j.micpath.2019.03.025

Article  CAS  PubMed  Google Scholar 

Loh JMS, Adenwalla N, Wiles S, Proft T (2013) Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 4:419–428. https://doi.org/10.4161/viru.24930

Article  PubMed  PubMed Central  Google Scholar 

Marion-Sanchez K, Olive C, Platon MG, Cesarine M, Derancourt C, Pailla K (2020) Achromobacter xylosoxidans in hospital environments: still waters run deep! Trans R Soc Trop Med Hyg 114:470–472. https://doi.org/10.1093/trstmh/trz109

Article  CAS  PubMed  Google Scholar 

Marji SM, Bayan MF, Jaradat A (2022) Facile fabrication of methyl gallate encapsulated folate ZIF-L nanoframeworks as a pH responsive drug delivery system for anti-biofilm and anticancer therapy. Biomimetics 7:242. https://doi.org/10.3390/biomimetics7040242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mechesso AF, Yixian Q, Park SC (2019) Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella Typhimurium. PLoS ONE 14:e0221386. https://doi.org/10.1371/journal.pone.0221386

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naga NG, Zaki AA, El-Badan DE, Rateb HS, Ghanem KM, Shaaban MI (2023) Inhibition of Pseudomonas aeruginosa quorum sensing by methyl gallate from Mangifera indica. Sci Rep 13:1. https://doi.org/10.1038/s41598-023-44063-0

Article  CAS  Google Scholar 

Oliveira APD, Costa MM, Nogueira DM, Dias FS (2020) Characterisation of Staphylococcus aureus strains from milk and goat cheese and evaluation of their inhibition by gallic acid, nisin and velame of the Brazilian caatinga. Int J Dairy Technol 73:345–356. https://doi.org/10.1111/1471-0307.12673

Article  CAS  Google Scholar 

Qu Q, Cui W, Huang X, Zhu Z, Dong Y, Yuan Z, Dong C, Zheng Y, Chen X, Yuan S, Li Y (2023) Gallic acid restores the sulfonamide sensitivity of multidrug-resistant Streptococcus suis via polypharmaceology mechanism. J Agric Food Chem 71:6894–6907. https://doi.org/10.1021/acs.jafc.2c06991

Article  CAS  PubMed  Google Scholar 

Quinto EJ, Caro I, Villalobos-Delgado LH, Mateo J, De-Mateo-Silleras B, Redondo-Del-Río MP (2019) Food safety through natural antimicrobials. Antibiotics 8:208. https://doi.org/10.3390/antibiotics8040208

Article  CAS 

Comments (0)

No login
gif