Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42(1):41–46. https://doi.org/10.1016/j.bej.2008.05.007
Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84:19–35. https://doi.org/10.1007/s00253-009-2079-4
Article CAS PubMed Google Scholar
Amarasinghe SR (2021) Use of invasive water hyacinth for composting of ordinary leaf litter. Sri Lankan J Agric Ecosyst 3(1):5–16
Amore A, Giacobbe S, Faraco V (2013) Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genom 14(4):230–249
Bajaj P, Mahajan R (2019) Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 103:8711–8724
Article CAS PubMed Google Scholar
Ball S, Bullock S, Lloyd L, Mapp KP, Ewen A (2011) Analysis of carbohydrates, alcohols, and organic acids by ion-exchange chromatography. Agilent Hi-plex Columns Applications Compendium. Agilent Technologies Inc., Santa Clara, California. https://www.agilent.com/cs/library/applications/5990-8801EN%20Hi-Plex%20Compendium.pdf
Burke SV, Wysocki WP, Zuloaga FO, Craine JM, Pires JC, Edger PP, Mayfield-Jones D, Clark LG, Kelchner SA, Duvall MR (2016) Evolutionary relationships in panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae). BMC Plant Biol 16(1):1–11. https://doi.org/10.1186/s12870-016-0823-3
Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30
Article CAS PubMed Google Scholar
Deshpande SK, Bhotmange MG, Chakrabarti T, Shastri PN (2008) Production of cellulase and xylanase by Trichoderma reesei (QM 9414 mutant), Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth (Eichhornia crassipes). Ind J Chem Tech 15:449–456
Fatma S, Saleem A, Tabassum R (2021) Wheat straw hydrolysis by using co-cultures of Trichoderma reesei and Monascus purpureus toward enhanced biodegradation of the lignocellulosic biomass in bioethanol biorefinery. Biomass Convers Biorefin 11:743–754
Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J vis Exp 37:1837. https://doi.org/10.3791/1837
Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268
Global biodiversity information facility (2019) GBIF. Gbif.org. https://www.gbif.org/. Accessed 24 February 2024
Gottschalk LMF, Oliveira RA, Bon EPS (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78. https://doi.org/10.1016/j.bej.2010.05.003
Guna V, Ilangovan M, Anantha Prasad MG, Reddy N (2017) Water hyacinth: a unique source for sustainable materials and products. ACS Sustain Chem Eng 5(6):4478–4490. https://doi.org/10.1021/acssuschemeng.7b00051
Gupta MN, Bisaria VS (2018) Stable cellulolytic enzymes and their application in hydrolysis of lignocellulosic biomass. Biotechnol J. https://doi.org/10.1002/biot.201700633
Gusakov AV, Sinitsyn AP (2012) Cellulases from Penicillium species for producing fuels from biomass. Biofuels 3(4):463–477
Hodgson-Kratky K, Papa G, Rodriguez A, Stavila V, Simmons B, Botha F, Furtado A, Henry R (2019) Relationship between sugarcane culm and leaf biomass composition and saccharification efficiency. Biotechnol Biofuels. https://doi.org/10.1186/s13068-019-1588-3
Article PubMed PubMed Central Google Scholar
Kariyawasam CS, Kumar L, Ratnayake SS (2021) Potential risks of invasive alien plant species on agriculture under climate change scenarios in Sri Lanka. Curr Res Environ Sustain 3:100051
Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F (1992) Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol 58(1):106–110
Article CAS PubMed PubMed Central Google Scholar
Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
Article CAS PubMed PubMed Central Google Scholar
Mandels M (1975) Microbial sources of cellulase. Biotechnol Bioeng Symp 5:81–105
Mandels M, Weber J (1969) The production of cellulases. Adv Chem 95:391–414
Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6:21–33
Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20(3):372–380. https://doi.org/10.1016/j.copbio.2009.05.009
Article CAS PubMed Google Scholar
Messner R, Hagspiel K, Kubicek CP (1990) Isolation of a β-glucosidase binding and activating polysaccharide from cell walls of Trichoderma reesei. Arch Microbiol 154(2):150–155. https://doi.org/10.1007/BF00423325
Miller GL (1959) Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030
Moodley P, Kana EBG (2017) Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification. Bioresour Technol 235:35–42. https://doi.org/10.1016/j.biortech.2017.03.031
Article CAS PubMed Google Scholar
Morilla EA, Taddia A, Sortino M, Tubio G (2023) Mixed cultures of Aspergillus niger and Rhizopus oryzae using lignocellulosic substrates to improve hydrolytic enzyme production. BioEnergy Res 16:2285–2296
O’ Neill MA, York WS, (2003) The composition and structure of plant primary cell walls. Annual plant reviews, 8th edn. Rose JKC Blackwell publishing Ltd, Oxford, pp 1–54
Odorico FH, Morandim-Giannetti ADA, Lucarini AC, Torres RB (2018) Pretreatment of guinea grass (Panicum maximum) with the ionic liquid 1-ethyl-3-methyl imidazolium acetate for efficient hydrolysis and bioethanol production. Cellulose 25:2997–3009. https://doi.org/10.1007/s10570-018-1753-z
Peláez RDR, Wischral D, Cunha JRB, Mendes TD, Pacheco TF, Siqueira FGD, Almeida JRMD (2022) Production of enzymatic extract with high cellulolytic and oxidative activities by co-culture of Trichoderma reesei and Panus lecomtei. Fermentation 8(10):522
Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiol 158:58–68. https://doi.org/10.1099/mic.0.054031-0
Premaratne S, Ibrahim MNM, Perera HGD (1993) Effect of stage of growth and additives on digestibility and palatability of Guinea (Panicum maximum, Jacq) grass silage. J Natl Sci Found Sri Lanka 21(2):175–182
Santana JC, Souza Abud AK, Wisniewski A, Navickiene S, Romão LPC (2020) Optimization of an organosolv method using glycerol with iron catalysts for the pretreatment of water hyacinth. Biomass Bioenergy 133:105454. https://doi.org/10.1016/j.biombioe.2019.105454
Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228. https://doi.org/10.1016/S1369-5274(03)00056-0
Comments (0)