Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34(20):5863–5871. https://doi.org/10.1093/nar/gkl743
Article CAS PubMed PubMed Central Google Scholar
Baghdadi MB, Tajbakhsh S (2018) Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 433(2):200–209. https://doi.org/10.1016/j.ydbio.2017.07.026
Article CAS PubMed Google Scholar
Ballarino M, Morlando M, Fatica A, Bozzoni I (2016) Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest 126(6):2021–2030. https://doi.org/10.1172/jci84419
Article PubMed PubMed Central Google Scholar
Boyer JG, Prasad V, Song T, Lee D, Fu X, Grimes KM, Molkentin JD (2019) ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. JCI Insight 5(10). https://doi.org/10.1172/jci.insight.127356
Brown A, Baird MR, Yip MC, Murray J, Shao S (2018) Structures of translationally inactive mammalian ribosomes. Elife 7. https://doi.org/10.7554/eLife.40486
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. https://doi.org/10.1038/ng1725
Article CAS PubMed Google Scholar
Cheng C, Zhang S, Gong Y, Wang X, Tang S, Wan J, Yao LH (2023) Cordycepin inhibits myogenesis via activating the ERK1/2 MAPK signalling pathway in C2C12 cells. Biomed Pharmacother 165:115163. https://doi.org/10.1016/j.biopha.2023.115163
Article CAS PubMed Google Scholar
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059. https://doi.org/10.1002/cphy.c140068
Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184. https://doi.org/10.1016/j.cmet.2012.12.012
Article CAS PubMed Google Scholar
Elnour IE, Wang X, Zhansaya T, Akhatayeva Z, Khan R, Cheng J, Chen H (2021) Circular RNA circMYL1 inhibit proliferation and promote differentiation of myoblasts by sponging miR-2400. Cells 10(1). https://doi.org/10.3390/cells10010176
Ge Y, Chen J (2011) MicroRNAs in skeletal myogenesis. Cell Cycle 10(3):441–448. https://doi.org/10.4161/cc.10.3.14710
Article CAS PubMed PubMed Central Google Scholar
Glazov EA, Kongsuwan K, Assavalapsakul W, Horwood PF, Mitter N, Mahony TJ (2009) Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection. PLoS ONE 4(7):e6349. https://doi.org/10.1371/journal.pone.0006349
Article CAS PubMed PubMed Central Google Scholar
Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Amati F (2017) Enhanced respiratory chain supercomplex formation in response to Exercise in human skeletal muscle. Cell Metab 25(2):301–311. https://doi.org/10.1016/j.cmet.2016.11.004
Article CAS PubMed Google Scholar
Guardavaccaro D, Ciotti MT, Schäfer BW, Montagnoli A, Tirone F (1995) Inhibition of differentiation in myoblasts deprived of the interferon-related protein PC4. Cell Growth Differ 6(2):159–169
Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186(1):104–115. https://doi.org/10.1002/1097-4652(200101)186:1%3C104::Aid-jcp1015%3E3.0.Co;2-0
Article CAS PubMed Google Scholar
Kabekkodu SP, Shukla V, Varghese VK, Chakrabarty JDS, S., Satyamoorthy K (2018) Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 93(4):1955–1986. https://doi.org/10.1111/brv.12428
Lake D, Corrêa SA, Müller J (2016) Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci 73(23):4397–4413. https://doi.org/10.1007/s00018-016-2297-8
Article CAS PubMed PubMed Central Google Scholar
Lammirato A, Patsch K, Feiereisen F, Maly K, Nofziger C, Paulmichl M, Vietor I (2016) TIS7 induces transcriptional cascade of methylosome components required for muscle differentiation. BMC Biol 14(1):95. https://doi.org/10.1186/s12915-016-0318-6
Article CAS PubMed PubMed Central Google Scholar
Levin JB, Borodinsky LN (2022) Injury-induced Erk1/2 signaling tissue-specifically interacts with ca(2+) activity and is necessary for regeneration of spinal cord and skeletal muscle. Cell Calcium 102:102540. https://doi.org/10.1016/j.ceca.2022.102540
Article CAS PubMed PubMed Central Google Scholar
Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E, Tirone F (2011) PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem 286(7):5691–5707. https://doi.org/10.1074/jbc.M110.162842
Article CAS PubMed Google Scholar
Mukund K, Subramaniam S (2020) Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med 12(1):e1462. https://doi.org/10.1002/wsbm.1462
Nakamura Y, Hinoi E, Iezaki T, Takada S, Hashizume S, Takahata Y, Yoneda Y (2013) Repression of adipogenesis through promotion of Wnt/β-catenin signaling by TIS7 up-regulated in adipocytes under hypoxia. Biochim Biophys Acta 1832(8):1117–1128. https://doi.org/10.1016/j.bbadis.2013.03.010
Article CAS PubMed Google Scholar
Oishi Y, Ogata T, Ohira Y, Roy RR (2019) Phosphorylated ERK1/2 protein levels are closely associated with the fast fiber phenotypes in rat hindlimb skeletal muscles. Pflugers Arch 471(7):971–982. https://doi.org/10.1007/s00424-019-02278-z
Article CAS PubMed Google Scholar
Park G, Horie T, Kanayama T, Fukasawa K, Iezaki T, Onishi Y, Hinoi E (2017) The transcriptional modulator Ifrd1 controls PGC-1α expression under short-term adrenergic stimulation in brown adipocytes. Febs j 284(5):784–795. https://doi.org/10.1111/febs.14019
Article CAS PubMed Google Scholar
Peng Y, Yue F, Chen J, Xia W, Huang K, Yang G, Kuang S (2021) Phosphatase orphan 1 inhibits myoblast proliferation and promotes myogenic differentiation. Faseb j 35(1):e21154. https://doi.org/10.1096/fj.202001672R
Article CAS PubMed Google Scholar
Roskoski R Jr. (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143. https://doi.org/10.1016/j.phrs.2012.04.005
Article CAS PubMed Google Scholar
Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR (2014) Thyroid hormones and skeletal muscle–new insights and potential implications. Nat Rev Endocrinol 10(4):206–214. https://doi.org/10.1038/nrendo.2013.238
Article CAS PubMed Google Scholar
Sousa-Victor P, García-Prat L, Muñoz-Cánoves P (2022) Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 23(3):204–226. https://doi.org/10.1038/s41580-021-00421-2
Article CAS PubMed Google Scholar
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 35(6):600–604. https://doi.org/10.3109/10799893.2015.1030412
Article CAS PubMed Google Scholar
Tirone F, Shooter EM (1989) Early gene regulation by nerve growth factor in PC12 cells: induction of an interferon-related gene. Proc Natl Acad Sci U S A 86(6):2088–2092. https://doi.org/10.1073/pnas.86.6.2088
Comments (0)