Enriched Environment Inhibits Neurotoxic Reactive Astrocytes via JAK2-STAT3 to Promote Glutamatergic Synaptogenesis and Cognitive Improvement in Chronic Cerebral Hypoperfusion Rats

Alkadhi KA (2019) Cellular and Molecular differences between area CA1 and the Dentate Gyrus of the Hippocampus. Mol Neurobiol 56:6566–6580. https://doi.org/10.1007/s12035-019-1541-2

Article  CAS  PubMed  Google Scholar 

Allen NJ, Eroglu C (2017) Cell Biology of astrocyte-synapse interactions. Neuron 96:697–708. https://doi.org/10.1016/j.neuron.2017.09.056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ et al (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–414. https://doi.org/10.1038/nature11059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bayat M, Sharifi MD, Haghani M, Shabani M (2015) Enriched environment improves synaptic plasticity and cognitive deficiency in chronic cerebral hypoperfused rats. Brain Res Bull 119:34–40. https://doi.org/10.1016/j.brainresbull.2015.10.001

Article  PubMed  Google Scholar 

Ben Haim L, Ceyzériat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M et al (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 35:2817–2829. https://doi.org/10.1523/jneurosci.3516-14.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birch AM, Kelly ÁM (2019) Lifelong environmental enrichment in the absence of exercise protects the brain from age-related cognitive decline. Neuropharmacology 145:59–74. https://doi.org/10.1016/j.neuropharm.2018.03.042

Article  CAS  PubMed  Google Scholar 

Blanco-Suárez E, Caldwell AL, Allen NJ (2017) Role of astrocyte-synapse interactions in CNS disorders. J Physiol 595:1903–1916. https://doi.org/10.1113/jp270988

Article  PubMed  Google Scholar 

Broussard JI, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F et al (2016) Dopamine regulates aversive contextual learning and Associated in vivo synaptic plasticity in the Hippocampus. Cell Rep 14:1930–1939. https://doi.org/10.1016/j.celrep.2016.01.070

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao W, Lin J, Xiang W, Liu J, Wang B, Liao W et al (2022) Physical Exercise-Induced Astrocytic Neuroprotection and Cognitive Improvement through Primary Cilia and Mitogen-Activated Protein Kinases Pathway in rats with chronic cerebral hypoperfusion. Front Aging Neurosci 14:866336. https://doi.org/10.3389/fnagi.2022.866336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceyzériat K, Ben Haim L, Denizot A, Pommier D, Matos M, Guillemaud O et al (2018) Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol Commun 6:104. https://doi.org/10.1186/s40478-018-0606-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen BH, Park JH, Lee YL, Kang IJ, Kim DW, Hwang IK et al (2018) Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed Pharmacother 108:687–697. https://doi.org/10.1016/j.biopha.2018.09.077

Article  CAS  PubMed  Google Scholar 

Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A et al (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433. https://doi.org/10.1016/j.cell.2004.12.020

Article  CAS  PubMed  Google Scholar 

Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115:E1896–e1905. https://doi.org/10.1073/pnas.1800165115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortese GP, Olin A, O’Riordan K, Hullinger R, Burger C (2018) Environmental enrichment improves hippocampal function in aged rats by enhancing learning and memory, LTP, and mGluR5-Homer1c activity. Neurobiol Aging 63:1–11. https://doi.org/10.1016/j.neurobiolaging.2017.11.004

Article  CAS  PubMed  Google Scholar 

Ding ZB, Song LJ, Wang Q, Kumar G, Yan YQ, Ma CG (2021) Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regen Res 16:1702–1710. https://doi.org/10.4103/1673-5374.306064

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding W, Zhao Z, Zheng Y, Wang R, Zhang Z, Zhang Z et al (2022) Exposure to short-chain chlorinated paraffins induces astrocyte activation via JAK2/STAT3 signaling pathway. Ecotoxicol Environ Saf 248:114268. https://doi.org/10.1016/j.ecoenv.2022.114268

Article  CAS  PubMed  Google Scholar 

Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K (2017) Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 131:2451–2468. https://doi.org/10.1042/cs20160727

Article  CAS  PubMed  Google Scholar 

Endo F, Kasai A, Soto JS, Yu X, Qu Z, Hashimoto H et al (2022) Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science 378:eadc9020. https://doi.org/10.1126/science.adc9020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hannan AJ (2014) Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol 40:13–25. https://doi.org/10.1111/nan.12102

Article  CAS  PubMed  Google Scholar 

Hayashi T (2021) Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br J Pharmacol 178:784–797. https://doi.org/10.1111/bph.15050

Article  CAS  PubMed  Google Scholar 

Jiang T, Luo J, Pan X, Zheng H, Yang H, Zhang L et al (2021) Physical exercise modulates the astrocytes polarization, promotes myelin debris clearance and remyelination in chronic cerebral hypoperfusion rats. Life Sci 278:119526. https://doi.org/10.1016/j.lfs.2021.119526

Article  CAS  PubMed  Google Scholar 

Jin X, Li T, Zhang L, Ma J, Yu L, Li C et al (2017) Environmental Enrichment improves spatial learning and memory in vascular dementia rats with activation of Wnt/β-Catenin Signal Pathway. Med Sci Monit 23:207–215. https://doi.org/10.12659/msm.902728

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiwa NS, Garrard P, Hainsworth AH (2010) Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem 115:814–828. https://doi.org/10.1111/j.1471-4159.2010.06958.x

Article  CAS  PubMed  Google Scholar 

Kanski R, van Strien ME, van Tijn P, Hol EM (2014) A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci 71:433–447. https://doi.org/10.1007/s00018-013-1435-9

Article  CAS  PubMed  Google Scholar 

Kempermann G (2019) Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci 20:235–245. https://doi.org/10.1038/s41583-019-0120-x

Article  CAS  PubMed  Google Scholar 

Knierim JJ (2015) The hippocampus. Curr Biol 25:R1116–1121. https://doi.org/10.1016/j.cub.2015.10.049

Article  CAS  PubMed 

Comments (0)

No login
gif