Suzuki J, Takaku A (1969) Cerebrovascular, “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 20:288299
Su JB, Xi SD, Zhou SY, Zhang X, Jiang SH, Xu B, Chen L, Lei Y, Gao C, Gu YX (2019) Microstructural damage pattern of vascular cognitive impairment: a comparison between moyamoya disease and cerebrovascular atherosclerotic disease. Neural Regen Res 14:858–867
Article PubMed PubMed Central Google Scholar
Zhang J, Li S, Fujimura M, Lau TY, Wu X, Hu M, ... Chen J (2019) Hemodynamic analysis of the recipient parasylvian cortical arteries for predicting postoperative hyperperfusion during STA-MCA bypass in adult patients with Moyamoya disease. J Neurosurg 134(1): 17–24
Berry JA, Cortez V, Toor H, Saini H, Siddiqi J (2020) Moyamoya: an update and review. Cureus 12(10):e10994. https://doi.org/10.7759/cureus.10994
Article PubMed PubMed Central Google Scholar
Lee KS, Zhang JJY, Bhate S, Ganesan V, Thompson D, James G, Silva AHD (2023) Surgical revascularizations for pediatric moyamoya: a systematic review, meta-analysis, and meta-regression analysis. Childs Nerv Syst. 39(5):1225–1243. https://doi.org/10.1007/s00381-023-05868-6
Article PubMed PubMed Central Google Scholar
Zhang H, Zheng L, Feng L (2019) Epidemiology, diagnosis and treatment of moyamoya disease. Exp Ther Med 17(3):1977–1984. https://doi.org/10.3892/etm.2019.7198
Article CAS PubMed PubMed Central Google Scholar
Kuroda S, Houkin K (2008) Moyamoya disease: current concepts and future perspectives. Lancet Neurol 7(11):1056–1066. https://doi.org/10.1016/S1474-4422(08)70240-0
Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243(3):812–819. https://doi.org/10.1148/radiol.2433060536
Zhang X, Xiao W, Zhang Q, Xia D, Gao P, Su J, Yang H, Gao X, Ni W, Lei Y, Gu Y (2022) Progression in Moyamoya Disease: Clinical Features, Neuroimaging Evaluation, and Treatment. Curr Neuropharmacol 20(2):292–308. https://doi.org/10.2174/1570159X19666210716114016
Article CAS PubMed PubMed Central Google Scholar
Kazumata K, Tokairin K, Ito M, Uchino H, Sugiyama T, Kawabori M, Osanai T, Tha KK, Houkin K (2020) Combined structural and diffusion tensor imaging detection of ischemic injury in moyamoya disease: Relation to disease advancement and cerebral hypoperfusion. J Neurosurg 1–10. https://doi.org/10.3171/2020.1.JNS193260
Research Committee on the Pathology Treatment of Spontaneous Occlusion of the Circle of Wills (2012) Health Labour Sciences Research Grant For Research on Measures for Infractable Diseases. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlu-sion of the circle of willis). Neurol Med Chir (Tokyo) 52:245266
Mikami T, Sugino T, Ohtaki S et al (2013) Diagnosis of moyamoya disease on magnetic resonance imaging: are flow voids in the basal ganglia an essential criterion for definitive diagnosis? J Stroke Cerebrovasc Dis 22:862868
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 4(1):1. https://doi.org/10.1186/2046-4053-4-1
Article PubMed PubMed Central Google Scholar
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, QUADAS-2 Group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Akiyama Y, Mikami T, Mikuni N (2020) Deep learning-based approach for the diagnosis of moyamoya disease. J Stroke Cerebrovasc Dis 29(12):105322. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105322
Hao X, Xu L, Liu Y, Luo C, Yin Y, Chen X, Tao X (2022) Construction of Diagnosis Model of Moyamoya Disease Based on Convolution Neural Network Algorithm. Comput Math Methods Med 25(2022):4007925. https://doi.org/10.1155/2022/4007925
Hong J, Yoon S, Shim KW, Park YR (2024) Screening of Moyamoya Disease From Retinal Photographs: Development and Validation of Deep Learning Algorithms. Stroke 55(3):715–724. https://doi.org/10.1161/STROKEAHA.123.044026
Article PubMed PubMed Central Google Scholar
Hu T, Lei Y, Su J, Yang H, Ni W, Gao C, Yu J, Wang Y, Gu Y (2023) Learning spatiotemporal features of DSA using 3D CNN and BiConvGRU for ischemic moyamoya disease detection. Int J Neurosci 133(5):512–522. https://doi.org/10.1080/00207454.2021.1929214
Article CAS PubMed Google Scholar
Kim T, Heo J, Jang DK, Sunwoo L, Kim J, Lee KJ, Kang SH, Park SJ, Kwon OK, Oh CW (2019) Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine. 40:636–642. https://doi.org/10.1016/j.ebiom.2018.12.043
Lei Y, Zhang X, Ni W, Yang H, Su JB, Xu B, Chen L, Yu JH, Gu YX, Mao Y (2021) Recognition of moyamoya disease and its hemorrhagic risk using deep learning algorithms: sourced from retrospective studies. Neural Regen Res 16(5):830–835. https://doi.org/10.4103/1673-5374.297085
Zhang Z, Wang Y, Zhou S, Li Z, Peng Y, Gao S, Zhu G, Wu F, Wu B (2023) The automatic evaluation of steno-occlusive changes in time-of-flight magnetic resonance angiography of moyamoya patients using a 3D coordinate attention residual network. Quant Imaging Med Surg 13(2):1009–1022. https://doi.org/10.21037/qims-22-799
Mannil M, von Spiczak J, Manka R, Alkadhi H (2018) Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography: Unveiling the Invisible. Invest Radiol 53(6):338–343. https://doi.org/10.1097/RLI.0000000000000448
Zhu T, Luo W, Yu F (2020) Convolution-and Attention-Based Neural Network for Automated Sleep Stage Classification. Int J Environ Res Public Health 17(11):4152. https://doi.org/10.3390/ijerph17114152
Article PubMed PubMed Central Google Scholar
Oh BH, Moon HC, Baek HM, Lee YJ, Kim SW, Jeon YJ, Lee GS, Kim HR, Choi JH, Min KS, Lee MS, Kim YG, Kim DH, Kim WS, Park YS (2017) Comparison of 7T and 3T MRI in patients with moyamoya disease. Magn Reson Imaging 37:134–138. https://doi.org/10.1016/j.mri.2016.11.019
Yongshi Teng, Shuhua Dai, Huiqin Liu et al (2023) A Differential Diagnostic Model for Moyamoya Disease and Non- moyamoya Ischemic Stroke: A Highly Efficient Clinical Approach, 06 February 2023, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-2536281/v1
Wu H, Xu J, Sun J, Duan J, Xiao J, Ren Q, Zhou P, Yan J, Li Y, Xiong X, Zeng E (2023) APOE as potential biomarkers of moyamoya disease. Front Neurol 9(14):1156894. https://doi.org/10.3389/fneur.2023.1156894
Liu X, Jin F, Wang C, Zhao S, Han S, Jiang P, Cui C (2022) Targeted metabolomics analysis of serum amino acid profiles in patients with Moyamoya disease. Amino Acids 54(1):137–146. https://doi.org/10.1007/s00726-021-03100-w
Article CAS PubMed Google Scholar
Weng R, Jiang Z, Gu Y (2022) Noncoding RNA as diagnostic and prognostic biomarkers in cerebrovascular disease. Oxid Med Cell Longev 19(2022):8149701. https://doi.org/10.1155/2022/8149701
Oichi Y, Mineharu Y, Agawa Y, Morimoto T, Funaki T, Hitomi T, Kobayashi H, Todo K, Tani S, Imamura H, Yoshida K, Kataoka H, Koizumi A, Sakai N, Miyamoto S (2022) Characterization of moyamoya and middle cerebral artery diseases by carotid canal diameter and RNF213 p. R4810K genotype. J Stroke Cerebrovasc Dis 31(6):106481. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106481
Comments (0)