Impact of subtype C-specific amino acid variants on HIV-1 Tat-TAR interaction: insights from molecular modelling and dynamics

Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, Tatem AJ, Sousa JD, Arinaminpathy N, Pépin J, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346:56–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:436–41.

Article  CAS  PubMed  Google Scholar 

UNAIDS. UNAIDS DATA. Geneva: Joint United Nations Programme on HIV/AIDS; 2022.

Google Scholar 

Govender RD, Hashim MJ, Khan MA, Mustafa H, Khan G. Global Epidemiology of HIV/AIDS: A Resurgence in North America and Europe. J Epidemiol Glob Health. 2021;11:296–301.

Article  PubMed  PubMed Central  Google Scholar 

Kharsany AB, Karim QA. HIV Infection and AIDS in Sub-Saharan Africa: Current Status Challenges and Opportunities. Open AIDS J. 2016;10:34–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemelaar J. The origin and diversity of the HIV-1 pandemic. Trends Mol Med. 2012;18:182–92.

Article  PubMed  Google Scholar 

Hemelaar J, Elangovan R, Yun J, Dickson-Tetteh L, Fleminger I, Kirtley S, Williams B, Gouws-Williams E, Ghys PD. Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect Dis. 2019;19:143–55.

Article  PubMed  Google Scholar 

Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1:a006841.

Article  PubMed  PubMed Central  Google Scholar 

Taylor BS, Hammer SM. The challenge of HIV-1 subtype diversity. N Engl J Med. 2008;359:1965–6.

Article  CAS  PubMed  Google Scholar 

Gartner MJ, Roche M, Churchill MJ, Gorry PR, Flynn JK. Understanding the mechanisms driving the spread of subtype C HIV-1. EBioMedicine. 2020;53:102682.

Article  PubMed  PubMed Central  Google Scholar 

Bbosa N, Kaleebu P, Ssemwanga D. HIV subtype diversity worldwide. Curr Opin HIV AIDS. 2019;14:153–60.

Article  PubMed  Google Scholar 

Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull. 2001;58:19–42.

Article  CAS  PubMed  Google Scholar 

Roy CN, Khandaker I, Oshitani H. Evolutionary Dynamics of Tat in HIV-1 Subtypes B and C. PLoS One. 2015;10:e0129896.

Article  PubMed  PubMed Central  Google Scholar 

Maljkovic Berry I, Ribeiro R, Kothari M, Athreya G, Daniels M, Lee HY, Bruno W, Leitner T. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: the evolutionary rate of HIV-1 slows down when the epidemic rate increases. J Virol. 2007;81:10625–35.

Article  PubMed  Google Scholar 

Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol. 2015;13:e1002251.

Article  PubMed  PubMed Central  Google Scholar 

Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol. 2019;208:131–69.

Article  PubMed  PubMed Central  Google Scholar 

Li W, Li G, Steiner J, Nath A. Role of Tat protein in HIV neuropathogenesis. Neurotoxicity research. 2009;16:205–20.

Article  CAS  PubMed  Google Scholar 

Yang M. Discoveries of Tat-TAR interaction inhibitors for HIV-1. Curr Drug Targets Infect Disord. 2005;5:433–44.

Article  CAS  PubMed  Google Scholar 

Li L, Dahiya S, Kortagere S, Aiamkitsumrit B, Cunningham D, Pirrone V, Nonnemacher MR, Wigdahl B. Impact of Tat Genetic Variation on HIV-1 Disease. Adv Virol. 2012;2012:123605.

Article  PubMed  PubMed Central  Google Scholar 

Gotora PT, van der Sluis R, Williams ME. HIV-1 Tat amino acid residues that influence Tat-TAR binding affinity: a scoping review. BMC Infectious Diseases. 2023;23:164.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenbaum NL. How Tat targets TAR: structure of the BIV peptide-RNA complex. Structure. 1996;4:5–9.

Article  CAS  PubMed  Google Scholar 

Siddappa NB, Venkatramanan M, Venkatesh P, Janki MV, Jayasuryan N, Desai A, Ravi V, Ranga U. Transactivation and signaling functions of Tat are not correlated: biological and immunological characterization of HIV-1 subtype-C Tat protein. Retrovirology. 2006;3:53.

Article  PubMed  PubMed Central  Google Scholar 

Johri MK, Sharma N, Singh SK. HIV Tat protein: Is Tat-C much trickier than Tat-B? J Med Virol. 2015;87:1334–43.

Article  CAS  PubMed  Google Scholar 

Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC. HIV-associated neurocognitive disorder - pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12:309.

Article  PubMed  PubMed Central  Google Scholar 

Campbell GR, Watkins JD, Singh KK, Loret EP, Spector SA. Human immunodeficiency virus type 1 subtype C Tat fails to induce intracellular calcium flux and induces reduced tumor necrosis factor production from monocytes. Journal of virology. 2007;81:5919–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams ME, Zulu SS, Stein DJ, Joska JA, Naudé PJW. Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis. 2020;136:104701.

Article  CAS  PubMed  Google Scholar 

Santerre M, Wang Y, Arjona S, Allen C, Sawaya BE. Differential Contribution of HIV-1 Subtypes B and C to Neurological Disorders: Mechanisms and Possible Treatments. AIDS Rev. 2019;21:76–83.

Article  PubMed  PubMed Central  Google Scholar 

Ruiz AP, Ajasin DO, Ramasamy S, DesMarais V, Eugenin EA, Prasad VR. A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation. Sci Rep. 2019;9:3308.

Article  PubMed  PubMed Central  Google Scholar 

Kurosu T, Mukai T, Komoto S, Ibrahim MS. Li Yg, Kobayashi T, Tsuji S, Ikuta K: Human immunodeficiency virus type 1 subtype C exhibits higher transactivation activity of Tat than subtypes B and E. Microbiology and immunology. 2002;46:787–99.

Article  CAS  PubMed  Google Scholar 

Borkar AN, Bardaro MF Jr, Camilloni C, Aprile FA, Varani G, Vendruscolo M. Structure of a low-population binding intermediate in protein-RNA recognition. Proc Natl Acad Sci U S A. 2016;113:7171–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaloin O, Peter JC, Briand JP, Masquida B, Desgranges C, Muller S, Hoebeke J. The N-terminus of HIV-1 Tat protein is essential for Tat-TAR RNA interaction. Cell Mol Life Sci. 2005;62:355–61.

Article  CAS  PubMed 

Comments (0)

No login
gif