s2MRI-ADNet: an interpretable deep learning framework integrating Euclidean-graph representations of Alzheimer’s disease solely from structural MRI

Querfurth HW, Laferla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329

Article  CAS  PubMed  Google Scholar 

Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878

Article  CAS  PubMed  Google Scholar 

Oishi K, Mielke MM, Albert M, Lyketsos CG, Mori S (2011) DTI analyses and clinical applications in Alzheimer’s disease. J Alzheimers Dis 26(s3):287–296

Article  PubMed  PubMed Central  Google Scholar 

Zhang N, Gordon ML, Goldberg TE (2017) Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev 72:168–175

Article  CAS  PubMed  Google Scholar 

Liu M, Li F, Yan H, Wang K, Ma Y, Shen L, Xu M, AsDN I (2020) A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 208:116459

Article  PubMed  Google Scholar 

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

Article  CAS  PubMed  Google Scholar 

Zhao K, Ding Y, Han Y, Fan Y, Alexander-Bloch AF, Han T, Jin D, Liu B, Lu J, Song C (2020) Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: diagnosis, longitudinal progress and biological basis. Sci Bull 65(13):1103–1113

Article  CAS  Google Scholar 

Zhang Y, Teng Q, Liu Y, Liu Y, He X (2022) Diagnosis of Alzheimer’s disease based on regional attention with sMRI gray matter slices. J Neurosci Method 365:109376

Article  Google Scholar 

Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y (2022) A survey on vision transformer. IEEE Trans Pattern Anal Mach Intell 45(1):87–110

Article  PubMed  Google Scholar 

Dai W, Zhang Z, Tian L, Yu S, Wang S, Dong Z, Zheng H (2022) BrainFormer: a hybrid CNN-transformer model for brain fMRI data classification. arXiv preprint arXiv:220803028.

Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao K, Zheng Q, Che T, Dyrba M, Li Q, Ding Y, Zheng Y, Liu Y, Li S (2021) Regional radiomics similarity networks (R2SNs) in the human brain: reproducibility, small-world properties and a biological basis. Netw Neurosci 5(3):783–797

PubMed  PubMed Central  Google Scholar 

Zhao K, Zheng Q, Dyrba M, Rittman T, Li A, Che T, Chen P, Sun Y, Kang X, Li Q (2022) Regional radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild cognitive impairment. Adv Sci 9(12):2104538

Article  Google Scholar 

Yao D, Sui J, Yang E, Yap P, Shen D, Liu M (2020) Temporal-adaptive graph convolutional network for automated identification of major depressive disorder using resting-state fMRI. International workshop on machine learning in medical imaging. Springer, New York, pp 1–10

Google Scholar 

Yao D, Sui J, Wang M, Yang E, Jiaerken Y, Luo N, Yap P-T, Liu M, Shen D (2021) A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans Med Imaging 40(4):1279–1289

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Knol MJ, Tiulpin A, Dubost F, de Bruijne M, Vernooij MW, Adams HH, Ikram MA, Niessen WJ, Roshchupkin GV (2019) Gray matter age prediction as a biomarker for risk of dementia. Proc Natl Acad Sci 116(42):21213–21218

Article  CAS  PubMed  PubMed Central  Google Scholar 

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:201011929

Guo J, Han K, Wu H, Tang Y, Chen X, Wang Y, Xu C (2022) Cmt: Convolutional neural networks meet vision transformers. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12175–12185

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Advances in Neural Information Processing Systems 30

Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Advances in Neural Information Processing Systems 30

Khoshraftar S, An A (2024) A survey on graph representation learning methods. ACM Trans Intell Syst Technol 15(1):1–55

Article  Google Scholar 

Zhao M, Yan W, Luo N, Zhi D, Fu Z, Du Y, Yu S, Jiang T, Calhoun VD, Sui J (2022) An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data. Med Image Anal 78:102413

Article  PubMed  PubMed Central  Google Scholar 

Sun L, Peng Q, Qian C, Li J Tau (2022) Content prediction based on brain network MLP-att model. In: 2022 international conference on machine learning, cloud computing and intelligent mining (MLCCIM). IEEE, pp 353–358

Zhang S, Chen X, Shen X, Ren B, Yu Z, Yang H, Jiang X, Shen D, Zhou Y, Zhang X-Y (2023) A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders. Med Image Anal 90:102932

Article  PubMed  Google Scholar 

Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7):e68910

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386

CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Li H, Zheng Q (2023) A comprehensive characterization of hippocampal feature ensemble serves as individualized brain signature for Alzheimer’s disease: deep learning analysis in 3238 participants worldwide. Eur Radiol 33(8):5385–5397

Article  PubMed  Google Scholar 

Jin D, Zhou B, Han Y, Ren J, Han T, Liu B, Lu J, Song C, Wang P, Wang D (2020) Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease. Adv Sci 7(14):2000675

Article  CAS  Google Scholar 

Ebrahimi A, Luo S, Chiong R (2020) Introducing transfer learning to 3D ResNet-18 for Alzheimer’s disease detection on MRI images. In: 2020 35th international conference on image and vision computing New Zealand (IVCNZ), Wellington, New Zealand. IEEE, pp 1–6

AI-Tam RM, AI-Hejri AM, Narangale SM, Samee NA, Mahmoud NF, AI-Masni MA, AI-Antari MA (2022) A hybrid workflow of residual convolutional transformer encoder for breast cancer classificationi using digital X-ray mammograms. Biomedicines 10(11):1971

Google Scholar 

Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:160902907

Taud H, Mas J (2018) Multilayer perceptron (MLP). In: Geomatic approaches for modeling land change scenarios. Springer, pp 451–455

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:171010903

Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2019) Strategies for pre-training graph neural networks. arXiv preprint arXiv:190512265

Kong Z, Zhang M, Zhu W, Yi Y, Wang T, Zhang B (2022) Multi-modal data Alzheimer’s disease detection based on 3D convolution. Biomed Signal Process Control 75:103565

Article  Google Scholar 

Pan J, Lei B, Shen Y, Liu Y, Feng Z, Wang S (2021) Characterization multimodal connectivity of brain network by hypergraph GAN for Alzheimer’s disease analysis. Chinese conference on pattern recognition and computer vision (PRCV). Springer, pp 467–478

Google Scholar 

Rasheed K, Qayyum A, Ghaly M, Al-Fuqaha A, Razi A, Qadir J (2022) Explainable, trustworthy, and ethical machine learning for healthcare: a survey. Comput Biol Med 149:106043

Article  PubMed  Google Scholar 

Qiu S, Joshi PS, Miller MI, Xue C, Zhou X, Karjadi C, Chang GH, Joshi AS, Dwyer B, Zhu S (2020) Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 143(6):1920–1933

Article  PubMed  PubMed Central  Google Scholar 

Bäckman L, Andersson J, Nyberg L, Winblad B, Nordberg A, Almkvist O (1999) Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 52(9):1861–1861

Article  PubMed  Google Scholar 

Zhang Y, Wang S, Phillips P, Yang J, Yuan T-F (2016) Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer’s disease. J Alzheimers Dis 50(4):1163–1179

Article  PubMed  Google Scholar 

Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP, Aboian MS, Mari Aparici C (2019) A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology 290(2):456–464

Article  PubMed  Google Scholar 

Caso F, Agosta F, Mattavelli D, Migliaccio R, Canu E, Magnani G, Marcone A, Copetti M, Falautano M, Comi G (2015) White matter degeneration in atypical Alzheimer disease. Radiology 277(1):162–172

Article  PubMed  Google Scholar 

Möller C, Pijnenburg YA, van der Flier WM, Versteeg A, Tijms B, de Munck JC, Hafkemeijer A, Rombouts SA, van der Grond J, van Swieten J (2016) Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis. Radiology 279(3):838–848

Article  PubMed 

Comments (0)

No login
gif