Bonkowski, M. (2004). Protozoa and plant growth: The microbial loop in soil revisited. New Phytologist, 162, 617–631.
Chai, Y., Pistorius, D., Ullrich, A., Weissman, K. J., Kazmaier, U., & Müller, R. (2010). Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chemistry & Biology, 17, 296–309.
Chai, Y., Shan, S., Weissman, K. J., Hu, S., Zhang, Y., & Müller, R. (2012). Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chemistry & Biology, 19, 361–371.
Choi, J., Park, T., Kang, D., Lee, J., Kim, Y., Lee, P., Chung, G. J. Y., & Cho, K. (2021a). Ananlysis of tubulysin biosynthetic genes in Archangium gephyra. Microbiology and Biotechnology Letters, 49, 458–465.
Choi, J., Park, T., Kang, D., Lee, J., Kim, Y., Lee, P., Chung, G. J. Y., & Cho, K. (2021b). Discovery of argyrin-producing Archangium gephyra MEHO_001 and identification of its argyrin biosynthetic genes. Microbiology and Biotechnology Letters, 49, 493–500.
Courter, J. R., Hamilton, J. Z., Hendrick, N. R., Zaval, M., Waight, A. B., Lyon, R. P., Senter, P. D., Jeffrey, S. C., & Burke, P. J. (2020). Structure-activity relationships of tubulysin analogues. Bioorganic & Medicinal Chemistry Letters, 30, 127241.
Herrmann, J., Fayad, A. A., & Müller, R. (2017). Natural products from myxobacteria: Novel metabolites and bioactivities. Natural Product Reports, 34, 135–160.
Article CAS PubMed Google Scholar
Hyun, H., & Cho, K. (2018). Secondary metabolites of myxobacteria. Korean Journal of Microbiology, 54, 175–187.
Janssen, G. R., & Dworkin, M. (1985). Cell-cell interactions in developmental lysis of Myxococcus xanthus. Developmental Biology, 112, 194–202.
Article CAS PubMed Google Scholar
Karp, G. C. (2014). Cell Biology. Wiley.
Khalil, M. W., Sasse, F., Lünsdorf, H., Elnakady, Y. A., & Reichenbach, H. (2006). Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. ChemBioChem, 7, 678–683.
Article CAS PubMed Google Scholar
Lee, B., Holkenbrink, C., Treuner-Lange, A., & Higgs, P. I. (2012). Myxococcus xanthus developmental cell fate production: Heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. Journal of Bacteriology, 194, 3058–3068.
Article CAS PubMed Google Scholar
Lee, S., Hyun, H., Choi, J., Park, S., Park, C., Ka, Y., & Cho, K. (2023). Complete genome sequence of Archangium gephyra KYC5002, a myxobacterium producing argyrins and tubulysins. Korean Journal of Microbiology, 59, 362–365.
Murray, B. C., Peterson, M. T., & Fecik, R. A. (2015). Chemistry and biology of tubulysins: Antimitotic tetrapeptides with activity against drug resistant cancers. Natural Product Reports, 32, 654–662.
Article CAS PubMed Google Scholar
Pérez, J., Moraleda-Muñoz, A., Marcos-Torres, F. J., & Muñoz-Dorado, J. (2016). Bacterial predation: 75 years and counting! Environmental Microbiology, 18, 766–779.
Petters, S., Groß, V., Söllinger, A., Pichler, M., Reinhard, A., Bengtsson, M. M., & Urich, T. (2021). The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? The ISME Journal, 15, 2665–2675.
Article CAS PubMed Google Scholar
Reddy, J. A., Dorton, R., Bloomfield, A., Nelson, M., Dircksen, C., Vetzel, M., Kleindl, P., Santhapuram, H., Vlahov, I. R., & Leamon, C. P. (2018). Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Scientific Reports, 8, 8943.
Risinger, A. L., & Du, L. (2020). Targeting and extending the eukaryotic druggable genome with natural products: Cytoskeletal targets of natural products. Natural Product Reports, 37, 634–652.
Article CAS PubMed Google Scholar
Sandmann, A., Sasse, F., & Müller, R. (2004). Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chemistry & Biology, 11, 1071–1079.
Sasse, F., Sieinmetz, H., Heil, J., Hőfle, G., & Reichenbach, H. (2000). Tubulysins, new cytostatic peptides from myxobacteria acting on microtubule: Production, isolation, physico-chemical and biological properties. The Journal of Antibiotics, 53, 879–885.
Article CAS PubMed Google Scholar
Shin, H., Youn, J., An, D., & Cho, K. (2013). Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Microbiology and Biotechnology Letters, 41, 44–51.
Steinmetz, H., Glaser, N., Herdtweck, E., Sasse, F., Reichenbach, H., & Höfle, G. (2004). Isolation, crystal and solution structure determination, and biosynthesis of tubulysins–powerful inhibitors of tubulin polymerization from myxobacteria. Angewandte Chemie International Edition, 43, 4888–4892.
Article CAS PubMed Google Scholar
Szigetvari, N. M., Dhawan, D., Ramos-Vara, J. A., Leamon, C. P., Klein, P. J., Ruple, A. A., Heng, H. G., Pugh, M. R., Rao, S., Vlahov, I. R., et al. (2018). Phase I/II clinical trial of the targeted chemotherapeutic drug, folate-tubulysin, in dogs with naturally-occurring invasive urothelial carcinoma. Oncotarget, 9, 37042–37053.
Thiery, S., & Kaimer, C. (2020). The predation strategy of Myxococcus xanthus. Frontiers in Microbiology, 11, 2.
Weissman, K. J., & Müller, R. (2010). Myxobacterial secondary metabolites: Bioactivities and modes-of-action. Natural Product Reports, 27, 1276–1295.
Article CAS PubMed Google Scholar
Wireman, J. W., & Dworkin, M. (1977). Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. Journal of Bacteriology, 129, 798–802.
Article CAS PubMed Google Scholar
Yu, U., Kim, J., Park, S., & Cho, K. (2023). Tubulysins are essential for the preying of ciliates by myxobacteria. Journal of Microbiology, 61, 627–632.
Comments (0)