Tubulysin Production by the Dead Cells of Archangium gephyra KYC5002

Bonkowski, M. (2004). Protozoa and plant growth: The microbial loop in soil revisited. New Phytologist, 162, 617–631.

Article  PubMed  Google Scholar 

Chai, Y., Pistorius, D., Ullrich, A., Weissman, K. J., Kazmaier, U., & Müller, R. (2010). Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chemistry & Biology, 17, 296–309.

Article  CAS  Google Scholar 

Chai, Y., Shan, S., Weissman, K. J., Hu, S., Zhang, Y., & Müller, R. (2012). Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chemistry & Biology, 19, 361–371.

Article  CAS  Google Scholar 

Choi, J., Park, T., Kang, D., Lee, J., Kim, Y., Lee, P., Chung, G. J. Y., & Cho, K. (2021a). Ananlysis of tubulysin biosynthetic genes in Archangium gephyra. Microbiology and Biotechnology Letters, 49, 458–465.

CAS  Google Scholar 

Choi, J., Park, T., Kang, D., Lee, J., Kim, Y., Lee, P., Chung, G. J. Y., & Cho, K. (2021b). Discovery of argyrin-producing Archangium gephyra MEHO_001 and identification of its argyrin biosynthetic genes. Microbiology and Biotechnology Letters, 49, 493–500.

CAS  Google Scholar 

Courter, J. R., Hamilton, J. Z., Hendrick, N. R., Zaval, M., Waight, A. B., Lyon, R. P., Senter, P. D., Jeffrey, S. C., & Burke, P. J. (2020). Structure-activity relationships of tubulysin analogues. Bioorganic & Medicinal Chemistry Letters, 30, 127241.

Article  CAS  Google Scholar 

Herrmann, J., Fayad, A. A., & Müller, R. (2017). Natural products from myxobacteria: Novel metabolites and bioactivities. Natural Product Reports, 34, 135–160.

Article  CAS  PubMed  Google Scholar 

Hyun, H., & Cho, K. (2018). Secondary metabolites of myxobacteria. Korean Journal of Microbiology, 54, 175–187.

Google Scholar 

Janssen, G. R., & Dworkin, M. (1985). Cell-cell interactions in developmental lysis of Myxococcus xanthus. Developmental Biology, 112, 194–202.

Article  CAS  PubMed  Google Scholar 

Karp, G. C. (2014). Cell Biology. Wiley.

Google Scholar 

Khalil, M. W., Sasse, F., Lünsdorf, H., Elnakady, Y. A., & Reichenbach, H. (2006). Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. ChemBioChem, 7, 678–683.

Article  CAS  PubMed  Google Scholar 

Lee, B., Holkenbrink, C., Treuner-Lange, A., & Higgs, P. I. (2012). Myxococcus xanthus developmental cell fate production: Heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. Journal of Bacteriology, 194, 3058–3068.

Article  CAS  PubMed  Google Scholar 

Lee, S., Hyun, H., Choi, J., Park, S., Park, C., Ka, Y., & Cho, K. (2023). Complete genome sequence of Archangium gephyra KYC5002, a myxobacterium producing argyrins and tubulysins. Korean Journal of Microbiology, 59, 362–365.

Google Scholar 

Murray, B. C., Peterson, M. T., & Fecik, R. A. (2015). Chemistry and biology of tubulysins: Antimitotic tetrapeptides with activity against drug resistant cancers. Natural Product Reports, 32, 654–662.

Article  CAS  PubMed  Google Scholar 

Pérez, J., Moraleda-Muñoz, A., Marcos-Torres, F. J., & Muñoz-Dorado, J. (2016). Bacterial predation: 75 years and counting! Environmental Microbiology, 18, 766–779.

Article  PubMed  Google Scholar 

Petters, S., Groß, V., Söllinger, A., Pichler, M., Reinhard, A., Bengtsson, M. M., & Urich, T. (2021). The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? The ISME Journal, 15, 2665–2675.

Article  CAS  PubMed  Google Scholar 

Reddy, J. A., Dorton, R., Bloomfield, A., Nelson, M., Dircksen, C., Vetzel, M., Kleindl, P., Santhapuram, H., Vlahov, I. R., & Leamon, C. P. (2018). Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Scientific Reports, 8, 8943.

Article  PubMed  Google Scholar 

Risinger, A. L., & Du, L. (2020). Targeting and extending the eukaryotic druggable genome with natural products: Cytoskeletal targets of natural products. Natural Product Reports, 37, 634–652.

Article  CAS  PubMed  Google Scholar 

Sandmann, A., Sasse, F., & Müller, R. (2004). Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chemistry & Biology, 11, 1071–1079.

Article  CAS  Google Scholar 

Sasse, F., Sieinmetz, H., Heil, J., Hőfle, G., & Reichenbach, H. (2000). Tubulysins, new cytostatic peptides from myxobacteria acting on microtubule: Production, isolation, physico-chemical and biological properties. The Journal of Antibiotics, 53, 879–885.

Article  CAS  PubMed  Google Scholar 

Shin, H., Youn, J., An, D., & Cho, K. (2013). Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Microbiology and Biotechnology Letters, 41, 44–51.

Article  CAS  Google Scholar 

Steinmetz, H., Glaser, N., Herdtweck, E., Sasse, F., Reichenbach, H., & Höfle, G. (2004). Isolation, crystal and solution structure determination, and biosynthesis of tubulysins–powerful inhibitors of tubulin polymerization from myxobacteria. Angewandte Chemie International Edition, 43, 4888–4892.

Article  CAS  PubMed  Google Scholar 

Szigetvari, N. M., Dhawan, D., Ramos-Vara, J. A., Leamon, C. P., Klein, P. J., Ruple, A. A., Heng, H. G., Pugh, M. R., Rao, S., Vlahov, I. R., et al. (2018). Phase I/II clinical trial of the targeted chemotherapeutic drug, folate-tubulysin, in dogs with naturally-occurring invasive urothelial carcinoma. Oncotarget, 9, 37042–37053.

Article  PubMed  Google Scholar 

Thiery, S., & Kaimer, C. (2020). The predation strategy of Myxococcus xanthus. Frontiers in Microbiology, 11, 2.

Article  PubMed  Google Scholar 

Weissman, K. J., & Müller, R. (2010). Myxobacterial secondary metabolites: Bioactivities and modes-of-action. Natural Product Reports, 27, 1276–1295.

Article  CAS  PubMed  Google Scholar 

Wireman, J. W., & Dworkin, M. (1977). Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. Journal of Bacteriology, 129, 798–802.

Article  CAS  PubMed  Google Scholar 

Yu, U., Kim, J., Park, S., & Cho, K. (2023). Tubulysins are essential for the preying of ciliates by myxobacteria. Journal of Microbiology, 61, 627–632.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif