ISLE: An Intelligent Streaming Framework for High-Throughput AI Inference in Medical Imaging

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–510. https://doi.org/10.1038/s41568-018-0016-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thrall JH, Li X, Li Q, et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol. 2018;15(3):504–508. https://doi.org/10.1016/j.jacr.2017.12.026

Article  PubMed  Google Scholar 

Wong S, Zaremba L, Gooden D, Huang HK. Radiologic image compression-a review. Proc IEEE. 1995;83(2):194–219. https://doi.org/10.1109/5.364466

Article  Google Scholar 

Sabottke CF, Spieler BM. The effect of image resolution on deep learning in radiography. Radiol Artif Intell. 2020;2(1):e190015. https://doi.org/10.1148/ryai.2019190015

Article  PubMed  PubMed Central  Google Scholar 

Huda W, Abrahams RB. X-ray-based medical imaging and resolution. Am J Roentgenol. 2015;204(4):W393–W397. https://doi.org/10.2214/AJR.14.13126

Article  Google Scholar 

Noumeir R, Pambrun JF. Using JPEG 2000 Interactive protocol to stream a large image or a large image set. J Digit Imaging. 2011;24(5):833–843. https://doi.org/10.1007/s10278-010-9343-0

Article  PubMed  Google Scholar 

Jo YY, Choi YS, Park HW, et al. Impact of image compression on deep learning-based mammogram classification. Sci Rep. 2021;11(1):7924. https://doi.org/10.1038/s41598-021-86726-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shih G, Wu CC, Halabi SS, et al. Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible pneumonia. Radiol Artif Intell. 2019;1(1):e180041. https://doi.org/10.1148/ryai.2019180041

Article  PubMed  PubMed Central  Google Scholar 

Lehmann TM, Abel J, Weiss C. The impact of lossless image compression to radiographs. In: Medical Imaging 2006: PACS and Imaging Informatics. Vol 6145.; 2006:290–297. https://doi.org/10.1117/12.651697

Clunie DA. Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches. In: Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues. Vol 3980.; 2000:74–84. https://doi.org/10.1117/12.386389

Koff DA, Shulman H. An overview of digital compression of medical images: can we use lossy image compression in radiology? Can Assoc Radiol J J Assoc Can Radiol. 2006;57(4):211–217.

Google Scholar 

Koff D, Bak P, Brownrigg P, et al. Pan-Canadian evaluation of irreversible compression ratios (“Lossy” Compression) for development of national guidelines. J Digit Imaging. 2009;22(6):569–578. https://doi.org/10.1007/s10278-008-9139-7

Article  PubMed  Google Scholar 

Johnson AEW, Pollard TJ, Greenbaum NR, et al. MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. Published online November 14, 2019. https://doi.org/10.48550/arXiv.1901.07042

Foos DH, Muka E, Slone RM, et al. JPEG 2000 compression of medical imagery. In: Blaine GJ, Siegel EL, eds. Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues. Vol 3980.; 2000:85–96. https://doi.org/10.1117/12.386390

HTJ2K Transfer Syntax. Published online November 14, 2023. Accessed February 21, 2024. https://dicom.nema.org/medical/dicom/Final/sup235_ft_HTJ2K.pdf

AWS HealthImaging. Accessed February 21, 2024. https://aws.amazon.com/healthimaging/

High Throughput JPEG 2000 (HTJ2K) and the JPH file format: a primer. Accessed February 21, 2024. https://ds.jpeg.org/whitepapers/jpeg-htj2k-whitepaper.pdf

Taubman D, Naman A, Mathew R, Smith M, Watanabe O, Lemieux PA. High throughput JPEG 2000 (HTJ2K): Algorithm, performance and potential. Published online May 29, 2020. Accessed February 21, 2024. https://htj2k.com/wp-content/uploads/white-paper.pdf

Boliek M, Christopoulos C, Majani E. JPEG 2000 Image Coding System. Published online April 11, 2000. Accessed February 26, 2024. https://ics.uci.edu/~dan/class/267/papers/jpeg2000.pdf

Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2017:3462–3471. https://doi.org/10.1109/CVPR.2017.369

Irvin J, Rajpurkar P, Ko M, et al. CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. Proc AAAI Conf Artif Intell. 2019;33(01):590–597. https://doi.org/10.1609/aaai.v33i01.3301590

Article  Google Scholar 

Garbin C, Rajpurkar P, Irvin J, Lungren MP, Marques O. Structured dataset documentation: a datasheet for CheXpert. Published online May 6, 2021. https://doi.org/10.48550/arXiv.2105.03020

Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101(23). https://doi.org/10.1161/01.CIR.101.23.e215

Johnson AEW, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data. 2019;6(1):317. https://doi.org/10.1038/s41597-019-0322-0

Article  PubMed  PubMed Central  Google Scholar 

Antonelli M, Reinke A, Bakas S, et al. The medical segmentation decathlon. Nat Commun. 2022;13(1):4128. https://doi.org/10.1038/s41467-022-30695-9

Article  CAS  PubMed  Google Scholar 

Landman B, Xu Z, Igelsias J, Styner M, Langerak T, Klein A. MICCAI multi-atlas labeling beyond the cranial vault - workshop and challenge. Published Online 2015. https://doi.org/10.7303/SYN3193805

Article  Google Scholar 

Liu Z, Zhuang J, Xu X, et al. Machine Vision Guided 3D Medical Image Compression for Efficient Transmission and Accurate Segmentation in the Clouds. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2019:12679–12688. https://doi.org/10.1109/CVPR.2019.01297

Doo FX, Vosshenrich J, Cook TS, et al. Environmental Sustainability and AI in Radiology: A Double-Edged Sword. Radiology. 2024;310(2):e232030. https://doi.org/10.1148/radiol.232030

Article  PubMed  Google Scholar 

Douthit N, Kiv S, Dwolatzky T, Biswas S. Exposing some important barriers to health care access in the rural USA. Public Health. 2015;129(6):611–620. https://doi.org/10.1016/j.puhe.2015.04.001

Article  CAS  PubMed  Google Scholar 

Doo FX, Kulkarni P, Siegel EL, et al. Economic and environmental costs of cloud technologies for medical imaging and radiology artificial intelligence. J Am Coll Radiol. 2024;21(2):248–256. https://doi.org/10.1016/j.jacr.2023.11.011

Article  PubMed  Google Scholar 

Herrmann MD, Clunie DA, Fedorov A, et al. Implementing the DICOM standard for digital pathology. J Pathol Inform. 2018;9:37. https://doi.org/10.4103/jpi.jpi_42_18

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif