R. Bai, Z. Lv, D. Xu, J. Cui, Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark. Res. 8, 34 (2020)
Article PubMed PubMed Central Google Scholar
V. Vafaizadeh, Z. Barekati, Immuno-oncology biomarkers for personalized immunotherapy in breast cancer. Front. Cell Dev. Biol. 8, 162 (2020)
Article PubMed PubMed Central Google Scholar
F. Veglia, E. Sanseviero, D.I. Gabrilovich, Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21(8), 485–498 (2021)
Article CAS PubMed PubMed Central Google Scholar
Y. Yang, C. Li, T. Liu, X. Dai, A.V. Bazhin, Myeloid-derived suppressor cells in tumors: From mechanisms to antigen specificity and microenvironmental regulation. Front. Immunol. 11, 1371 (2020)
Article CAS PubMed PubMed Central Google Scholar
L. Wu, X.H.F. Zhang, Tumor-associated neutrophils and macrophages-heterogenous but not chaotic. Front. Immunol. 11, 553967 (2020)
Article CAS PubMed PubMed Central Google Scholar
Y. Lin, J. Xu, H. Lan, Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12(1), 76 (2019)
Article PubMed PubMed Central Google Scholar
Y.-C. Chuang, J.-C. Tseng, L.-R. Huang, C.-M. Huang, C.-Y.F. Huang, T.-H. Chuang, Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol. 11, 1075 (2020)
Article CAS PubMed PubMed Central Google Scholar
S.A. Patel, A.J. Minn, Combination cancer therapy with immune checkpoint blockade: Mechanisms and strategies. Immunity. 48(3), 417–433 (2018)
Article CAS PubMed PubMed Central Google Scholar
T. Shekarian, S. Valsesia-Wittmann, J. Brody, M.C. Michallet, S. Depil, C. Caux, et al., Pattern recognition receptors: Immune targets to enhance cancer immunotherapy. Ann. Oncol. 28(8), 1756–1766 (2017)
Article CAS PubMed Google Scholar
G.P. Amarante-Mendes, S. Adjemian, L.M. Branco, L.C. Zanetti, R. Weinlich, K.R. Bortoluci, Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 9, 2379 (2018)
Article PubMed PubMed Central Google Scholar
S. Gordon, Pattern recognition receptors. Cell. 111(7), 927–930 (2002)
Article CAS PubMed Google Scholar
B. Huang, J. Zhao, J.C. Unkeless, Z.H. Feng, H. Xiong, TLR signaling by tumor and immune cells: a double-edged sword. Oncogene. 27(2), 218–224 (2008)
Article CAS PubMed Google Scholar
Z. Urban-Wojciuk, M.M. Khan, B.L. Oyler, R. Fåhraeus, N. Marek-Trzonkowska, A. Nita-Lazar, et al., The role of TLRs in anti-cancer immunity and tumor rejection. Front. Immunol. 10, 2388 (2019)
Article CAS PubMed PubMed Central Google Scholar
E. Chiffoleau, C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front. Immunol. 9, 227 (2018)
Article PubMed PubMed Central Google Scholar
T.B.H. Geijtenbeek, S.I. Gringhuis, Signalling through C-type lectin receptors: Shaping immune responses. Nat. Rev. Immunol. 9(7), 465–479 (2009)
Article CAS PubMed PubMed Central Google Scholar
F. Osorio, C. Reis E Sousa, Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 34(5), 651–664 (2011)
Article CAS PubMed Google Scholar
D. Daley, V.R. Mani, N. Mohan, N. Akkad, A. Ochi, D.W. Heindel, et al., Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23(5), 556–567 (2017)
Article CAS PubMed PubMed Central Google Scholar
R. Kiyotake, M. Oh-Hora, E. Ishikawa, T. Miyamoto, T. Ishibashi, S. Yamasaki, Human mincle binds to cholesterol crystals and triggers innate immune responses. J. Biol. Chem. 290(42), 25322–25332 (2015)
Article CAS PubMed PubMed Central Google Scholar
S. Mayer, M.-K. Raulf, B. Lepenies, C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 147(2), 223–237 (2016)
D. Zheng, T. Liwinski, E. Elinav, Interaction between microbiota and immunity in health and disease. Cell Res. 30(6), 492–506 (2020)
Article PubMed PubMed Central Google Scholar
S.E.M. Heinsbroek, P.R. Taylor, M. Rosas, J.A. Willment, D.L. Williams, S. Gordon, et al., Expression of functionally different Dectin-1 isoforms by murine macrophages. J. Immunol. 176(9), 5513–5518 (2006)
Article CAS PubMed Google Scholar
J.A. Willment, A.S.J. Marshall, D.M. Reid, D.L. Williams, S.Y.C. Wong, S. Gordon, et al., The human?-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol. 35(5), 1539–1547 (2005)
Article CAS PubMed Google Scholar
G.D. Brown, S. Gordon, A new receptor for β-glucans. Nature. 413(6851), 36–37 (2001)
Article CAS PubMed Google Scholar
E.L. Adams, P.J. Rice, B. Graves, H.E. Ensley, H. Yu, G.D. Brown, et al., Differential high-affinity interaction of Dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J. Pharmacol. Exp. Ther. 325(1), 115–123 (2008)
Article CAS PubMed Google Scholar
S. Chiba, H. Ikushima, H. Ueki, H. Yanai, Y. Kimura, S. Hangai, et al., Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife 3, e04177–e (2014)
Article PubMed PubMed Central Google Scholar
M. Liu, F. Luo, C. Ding, S. Albeituni, X. Hu, Y. Ma, et al., Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J. Immunol. 195(10), 5055–5065 (2015)
Article CAS PubMed Google Scholar
P. Allavena, M. Chieppa, G. Bianchi, G. Solinas, M. Fabbri, G. Laskarin, et al., Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin. Dev. Immunol. 2010, 547179 (2010)
K. Bode, F. Bujupi, C. Link, T. Hein, S. Zimmermann, D. Peiris, et al., Dectin-1 binding to annexins on apoptotic cells induces peripheral immune tolerance via NADPH oxidase-2. Cell Rep. 29(13), 4435–46.e9 (2019)
Article CAS PubMed Google Scholar
S. Shahbaz, N. Bozorgmehr, P. Koleva, A. Namdar, J. Jovel, R.A. Fava, et al., CD71+VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-beta. PLoS Biol. 16(12), e2006649 (2018)
Article PubMed PubMed Central Google Scholar
N. Bozorgmehr, I. Okoye, S. Mashhouri, J. Lu, P. Koleva, J. Walker, et al., CD71(+) erythroid cells suppress T-cell effector functions and predict immunotherapy outcomes in patients with virus-associated solid tumors. J. Immunother. Cancer 11(5) (2023)
Comments (0)