Deciphering fatty acid biosynthesis-driven molecular subtypes in pancreatic ductal adenocarcinoma with prognostic insights

R.L. Siegel, et al., Cancer statistics, 2023. CA Cancer J. Clin. 73(1), 17–48 (2023)

PubMed  Google Scholar 

E.A. Collisson, et al., Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17(4), 500–503 (2011)

CAS  PubMed  PubMed Central  Google Scholar 

J.D. Mizrahi, et al., Pancreatic cancer. Lancet 395(10242), 2008–2020 (2020)

CAS  PubMed  Google Scholar 

J. Encarnacion-Rosado, A.C. Kimmelman, Harnessing metabolic dependencies in pancreatic cancers. Nat. Rev. Gastroenterol. Hepatol. 18(7), 482–492 (2021)

PubMed  PubMed Central  Google Scholar 

J. Kim, R.J. DeBerardinis, Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30(3), 434–446 (2019)

CAS  PubMed  PubMed Central  Google Scholar 

S. Barthel, et al., Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. Nat. Cancer 4(4), 454–467 (2023)

PubMed  PubMed Central  Google Scholar 

Y. Li, et al., Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer. Cell Rep. Med. 4(9), 101162 (2023)

CAS  PubMed  PubMed Central  Google Scholar 

Z. Jin, Y.D. Chai, S. Hu, Fatty acid metabolism and cancer. Adv. Exp. Med. Biol. 1280, 231–241 (2021)

CAS  PubMed  Google Scholar 

S.M. Rossi, G. Konstantinidou, Targeting long chain acyl-CoA synthetases for cancer therapy. Int. J. Mol. Sci. 20(15), 3624 (2019)

Google Scholar 

M. Lopes-Marques, et al., Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates. BMC Evol. Biol. 13, 271 (2013)

PubMed  PubMed Central  Google Scholar 

S. Hanzelmann, R. Castelo, J. Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf. 14, 7 (2013)

Google Scholar 

A. Subramanian, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102(43), 15545–15550 (2005)

CAS  PubMed  PubMed Central  Google Scholar 

D.A. Barbie, et al., Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269), 108–112 (2009)

CAS  PubMed  PubMed Central  Google Scholar 

J. Gao, P.W. Kwan, D. Shi, Sparse kernel learning with LASSO and Bayesian inference algorithm. Neural Netw. 23(2), 257–264 (2010)

PubMed  Google Scholar 

D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009)

CAS  PubMed  Google Scholar 

P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008)

Google Scholar 

R.A. Moffitt, et al., Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47(10), 1168–1178 (2015)

J.P. Brunet, et al., Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. U. S. A. 101(12), 4164–4169 (2004)

CAS  PubMed  PubMed Central  Google Scholar 

K. Yoshihara, et al., Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013)

PubMed  Google Scholar 

B. Ru, et al., TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics 35(20), 4200–4202 (2019)

CAS  PubMed  Google Scholar 

A. Mayakonda, et al., Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28(11), 1747–1756 (2018)

CAS  PubMed  PubMed Central  Google Scholar 

D. Maeser, R.F. Gruener, R.S. Huang, oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 22(6), bbab260 (2021)

PubMed  PubMed Central  Google Scholar 

Y. Shu, C.W. Chua, An organoid assay for long-term maintenance and propagation of mouse prostate luminal epithelial progenitors and cancer cells. Methods Mol. Biol. 1940, 231–254 (2019)

CAS  PubMed  Google Scholar 

M.A. Fleming, P. Storz, Mimicking and manipulating pancreatic acinar-to-ductal metaplasia in 3-dimensional cell culture. J. Vis. Exp. (144) (2019)

J.A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7(10), 763–777 (2007)

N. Zaidi, et al., Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 52(4), 585–589 (2013)

CAS  PubMed  PubMed Central  Google Scholar 

W.C. Huang, et al., A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing beta5-integrin/c-met signaling pathway. J. Exp. Clin. Cancer Res. 38(1), 89 (2019)

PubMed  PubMed Central  Google Scholar 

F. Matsuzawa, et al., Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer 21(1), 200 (2021)

CAS  PubMed  PubMed Central  Google Scholar 

T. Arumugam, et al., S100P promotes pancreatic cancer growth, survival, and invasion. Clin. Cancer Res. 11(15), 5356–5364 (2005)

CAS  PubMed  Google Scholar 

R. Fischer-Colbrie, A. Laslop, R. Kirchmair, Secretogranin II: molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Prog. Neurobiol. 46(1), 49–70 (1995)

CAS  PubMed  Google Scholar 

T. Takeuchi, M. Hosaka, Sorting mechanism of peptide hormones and biogenesis mechanism of secretory granules by secretogranin III, a cholesterol-binding protein, in endocrine cells. Curr. Diabetes Rev. 4(1), 31–38 (2008)

CAS  PubMed  Google Scholar 

I. Comerford, et al., A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev. 24(3), 269–283 (2013)

CAS  PubMed  Google Scholar 

J.D. Klement, et al., An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J. Clin. Invest. 128(12), 5549–5560 (2018)

PubMed  PubMed Central  Google Scholar 

C. Wang, et al., CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance. Cell Stem Cell 28(9), 1597–1613.e7 (2021)

CAS  PubMed  PubMed Central  Google Scholar 

X. Jiang, et al., Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer 18(1), 10 (2019)

PubMed  PubMed Central  Google Scholar 

R. Wang, et al., Interferon gamma-induced interferon regulatory factor 1 activates transcription of HHLA2 and induces immune escape of hepatocellular carcinoma cells. Inflammation 45(1), 308–330 (2022)

CAS  PubMed  Google Scholar 

M.R. Stratton, P.J. Campbell, P.A. Futreal, The cancer genome. Nature 458(7239), 719–724 (2009)

CAS  PubMed  PubMed Central  Google Scholar 

M.R. Stratton, Exploring the genomes of cancer cells: progress and promise. Science 331(6024), 1553–1558 (2011)

CAS  PubMed  Google Scholar 

N.A. Rizvi, et al., Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230), 124–128 (2015)

CAS  PubMed  PubMed Central  Google Scholar 

A. Snyder, et al., Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371(23), 2189–2199 (2014)

PubMed  PubMed Central  Google Scholar 

L. Liu, et al., Combination of TMB and CNA stratifies prognostic and predictive responses to immunotherapy across metastatic cancer. Clin. Cancer Res. 25(24), 7413–7423 (2019)

CAS  PubMed 

Comments (0)

No login
gif