Liu J, Li M, Pan Y, Lan W, Zheng R, Wu F-X, et al. Complex brain network analysis and its applications to brain disorders: a survey. Complexity. 2017;2017:8362741.
Article MathSciNet Google Scholar
Yao Z, Hu B, Xie Y, Moore P, Zheng J. A review of structural and functional brain networks: small world and atlas. Brain Inform. 2015;2:45–52.
Article PubMed PubMed Central Google Scholar
Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 2008;4(6): e1000100.
Article PubMed PubMed Central ADS Google Scholar
Zuo N, Cheng J, Jiang T. Diffusion magnetic resonance imaging for Brainnetome: a critical review. Neurosci Bull. 2012;28:375–88.
Article PubMed PubMed Central Google Scholar
Feng J, Zhang S-W, Chen L, Zuo C, AsDN Initiative. Detection of Alzheimer’s disease using features of brain region-of-interest-based individual network constructed with the sMRI image. Comput Med Imaging Graph. 2022;98:102057.
He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex. 2007;17(10):2407–19.
He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci. 2008;28(18):4756–66.
Article CAS PubMed PubMed Central Google Scholar
Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T, et al. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol. 2010;6(11): e1001006.
Article MathSciNet PubMed PubMed Central ADS Google Scholar
Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6(2):67–77.
Article PubMed PubMed Central Google Scholar
Subaramya S, Kokul T, Nagulan R, Pinidiyaarachchi U, Jeyasuthan M. Detection of Alzheimer’s disease using structural brain network and convolutional neural network. In: 2021 10th International conference on information and automation for sustainability (ICIAfS), 2021. IEEE; 2021. p. 173–8.
Vemuri P, Jack C. Role of structural MRI in Alzheimer’s disease. Alzheimer’s Res Ther. 2010;2(4):1–10.
Zhao K, Zheng Q, Che T, Dyrba M, Li Q, Ding Y, et al. Regional radiomics similarity networks (R2SNs) in the human brain: reproducibility, small-world properties and a biological basis. Netw Neurosci. 2021;5(3):783–97.
PubMed PubMed Central Google Scholar
Zhao K, Zheng Q, Dyrba M, Rittman T, Li A, Che T, et al. Regional radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild cognitive impairment. Adv Sci. 2022;9(12): e2104538.
Staffaroni AM, Elahi FM, McDermott D, Marton K, Karageorgiou E, Sacco S, et al. Neuroimaging in dementia. Semin Neurol. 2017;37(05):510–37.
Article PubMed PubMed Central Google Scholar
Ghanbari M, Soussia M, Jiang W, Wei D, Yap P-T, Shen D, et al. Alterations of dynamic redundancy of functional brain subnetworks in Alzheimer’s disease and major depression disorders. NeuroImage Clin. 2022;33: 102917.
Ghanbari M, Li G, Hsu LM, Yap PT. Accumulation of network redundancy marks the early stage of Alzheimer’s disease. Hum Brain Mapp. 2023;44(8):2993–3006.
Article PubMed PubMed Central Google Scholar
Li Y, Zhang X, Nie J, Zhang G, Fang R, Xu X, et al. Brain connectivity based graph convolutional networks and its application to infant age prediction. IEEE Trans Med Imaging. 2022;41(10):2764–76.
Article PubMed PubMed Central Google Scholar
Jin S, Zeng X, Xia F, Huang W, Liu X. Application of deep learning methods in biological networks. Brief Bioinform. 2021;22(2):1902–17.
Article CAS PubMed Google Scholar
Zhang X-M, Liang L, Liu L, Tang M-J. Graph neural networks and their current applications in bioinformatics. Front Genet. 2021;12: 690049.
Article CAS PubMed PubMed Central ADS Google Scholar
Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: a review of methods and applications. AI Open. 2020;1:57–81.
Zhao X, Wu J, Peng H, Beheshti A, Monaghan JJ, McAlpine D, et al. Deep reinforcement learning guided graph neural networks for brain network analysis. Neural Netw. 2022;154:56–67.
Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, et al. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal. 2018;48:117–30.
Lee H, Lee DS, Kang H, Kim B-N, Chung MK. Sparse brain network recovery under compressed sensing. IEEE Trans Med Imaging. 2011;30(5):1154–65.
Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, et al. Sparse network-based models for patient classification using fMRI. Neuroimage. 2015;105:493–506.
Yu R, Zhang H, An L, Chen X, Wei Z, Shen D. Connectivity strength-weighted sparse group representation-based brain network construction for MCI classification. Hum Brain Mapp. 2017;38(5):2370–83.
Article PubMed PubMed Central Google Scholar
Wee C-Y, Yap P-T, Zhang D, Wang L, Shen D. Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct Funct. 2014;219:641–56.
Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, et al. Multicenter and multichannel pooling GCN for early AD diagnosis based on dual-modality fused brain network. IEEE Trans Med Imaging. 2022;42(2):354–67.
Zhu D, Zhang T, Jiang X, Hu X, Chen H, Yang N, et al. Fusing DTI and fMRI data: a survey of methods and applications. Neuroimage. 2014;102:184–91.
Hoffer E, Ailon N. Deep metric learning using triplet network. In: Similarity-based pattern recognition: third international workshop, SIMBAD 2015, Copenhagen, Denmark, 12–14 October 2015, Proceedings 3. Springer; 2015. p. 84–92.
Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015. p. 815–23.
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell. 2008;31(2):210–27.
Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY, et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw. 2020;32(1):4–24.
Cui Z, Zhong S, Xu P, He Y, Gong G. PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci. 2013;7:42.
Article PubMed PubMed Central ADS Google Scholar
Simpson SL, Bowman FD, Laurienti PJ. Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Stat Surv. 2013;7:1.
Article MathSciNet PubMed PubMed Central Google Scholar
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.
Article CAS PubMed Google Scholar
Dhifallah S, Rekik I, AsDN Initiative. Estimation of connectional brain templates using selective multi-view network normalization. Med Image Anal. 2020;59:101567.
Comments (0)