Banerjee I, Sofela M, Yang J, et al. Development and performance of the pulmonary embolism result forecast model (PERFORM) for computed tomography clinical decision support. JAMA Netw Open. 2019. https://doi.org/10.1001/jamanetworkopen.2019.8719.
Article PubMed PubMed Central Google Scholar
Ma H, Sheng W, Li J, et al. A novel hierarchical machine learning model for hospital-acquired venous thromboembolism risk assessment among multiple-departments. J Biomed Inform. 2021;122: 103892. https://doi.org/10.1016/j.jbi.2021.103892.
Cano-Espinosa C, Cazorla M, González G. Computer aided detection of pulmonary embolism using multi-slice multi-axial segmentation. Appl Sci. 2020. https://doi.org/10.3390/APP10082945.
Huang SC, Kothari T, Banerjee I, et al. PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digit Med. 2020. https://doi.org/10.1038/s41746-020-0266-y.
Article PubMed PubMed Central Google Scholar
Shi L, Rajan D, Abedin S, et al (2020) Automatic diagnosis of pulmonary embolism using an attention-guided framework: a large-scale study. In Medical imaging with deep learning, pp 743–754. PMLR
Shi L, Dehghan E (2020) Automatic diagnosis of pulmonary embolism using an attention-guided framework : a large-scale study. 1–12
Kiourt C, Feretzakis G, Dalamarinis K, Kalles D (2021) Pulmonary embolism identification in computerized tomography pulmonary angiography scans with deep learning technologies in COVID-19 patients. arXiv:2105.11187
Valle C, Bonaffini PA, Dal Corso M, et al. Association between pulmonary embolism and COVID-19 severe pneumonia: experience from two centers in the core of the infection Italian peak. Eur J Radiol. 2021. https://doi.org/10.1016/j.ejrad.2021.109613.
Article PubMed PubMed Central Google Scholar
Sakr Y, Giovini M, Leone M, et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care. 2020;10:1–13.
Thachil R, Nagraj S, Kharawala A, Sokol SI. Pulmonary embolism in women: a systematic review of the current literature. J Cardiovasc Dev Dis. 2022. https://doi.org/10.3390/jcdd9080234.
Article PubMed PubMed Central Google Scholar
Morís DI, de Moura Ramos JJ, Buján JN, Hortas MO. Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images. Expert Syst Appl. 2021;185: 115681. https://doi.org/10.1016/j.eswa.2021.115681.
Article PubMed PubMed Central Google Scholar
Kiourt C, Feretzakis G, Dalamarinis K, et al (2021) Pulmonary embolism identification in computerized tomography pulmonary angiography scans with deep learning technologies in COVID-19 patients. arXiv:2105.11187
Mountain D, Keijzers G, Chu K, et al. Correction: RESPECT-ED: rates of pulmonary emboli (PE) and sub-segmental PE with modern computed tomographic pulmonary angiograms in emergency departments: a multi-center observational study finds significant yield variation, uncorrelated with use or smal. PLoS ONE. 2017;12:2015–8. https://doi.org/10.1371/journal.pone.0184219.
Kocher KE, Meurer WJ, Fazel R, Scott PA. National trends in use of computed tomography in the emergency department. YMEM. 2011;58:452-462.e3. https://doi.org/10.1016/j.annemergmed.2011.05.020.
Wang RC, Bent S, Weber E, et al. The impact of clinical decision rules on computed tomography use and yield for pulmonary embolism: a systematic review and meta-analysis. Ann Emerg Med. 2016;67:693-701.e3. https://doi.org/10.1016/j.annemergmed.2015.11.005.
Shahid O, Nasajpour M, Pouriyeh S, et al. Machine learning research towards combating COVID-19: virus detection, spread prevention, and medical assistance. J Biomed Inform. 2021;117: 103751. https://doi.org/10.1016/j.jbi.2021.103751.
Article PubMed PubMed Central Google Scholar
Rucco M, Rodrigues DS, Merelli E, et al. Neural hypernetwork approach for pulmonary embolism diagnosis. BMC Res Notes. 2015. https://doi.org/10.1186/s13104-015-1554-5.
Article PubMed PubMed Central Google Scholar
Puaschunder JM. The potential for artificial intelligence in healthcare. SSRN Electron J. 2020;6:94–8. https://doi.org/10.2139/ssrn.3525037.
Rysavy M. Evidence-based medicine: a science of uncertainty and an art of probability. Virtual Mentor. 2013;15:4–8. https://doi.org/10.1001/virtualmentor.2013.15.1.fred1-1301.
Menegotto AB, Becker CDL, Cazella SC. Computer-aided diagnosis of hepatocellular carcinoma fusing imaging and structured health data. Heal Inf Sci Syst. 2021. https://doi.org/10.1007/s13755-021-00151-x.
Wu C, Guo S, Hong Y, et al. Discrimination and conversion prediction of mild cognitive impairment using convolutional neural networks. Quant Imaging Med Surg. 2018;8:992–1003.
Article PubMed PubMed Central Google Scholar
Fisher CK, Smith AM, Walsh JR, et al. Machine learning for comprehensive forecasting of Alzheimer’s disease progression. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-49656-2.
Article PubMed PubMed Central Google Scholar
Arco JE, Ramírez J, Górriz JM, Ruz M. Data fusion based on Searchlight analysis for the prediction of Alzheimer’s disease. Expert Syst Appl. 2021. https://doi.org/10.1016/j.eswa.2021.115549.
Thabtah F, Spencer R, Ye Y. The correlation of everyday cognition test scores and the progression of Alzheimer’s disease: a data analytics study. Heal Inf Sci Syst. 2020. https://doi.org/10.1007/s13755-020-00114-8.
Ryan L, Mataraso S, Siefkas A, et al. A machine learning approach to predict deep venous thrombosis among hospitalized patients. Clin Appl Thromb. 2021. https://doi.org/10.1177/1076029621991185.
Wiener RS, Gould MK, Arenberg DA, et al. An official American Thoracic Society/American College of Chest Physicians policy statement: implementation of low-dose computed tomography lung cancer screening programs in clinical practice. Am J Respir Crit Care Med. 2015;192:881–91. https://doi.org/10.1164/rccm.201508-1671ST.
Article PubMed PubMed Central Google Scholar
Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020;41:1858. https://doi.org/10.1093/eurheartj/ehaa254.
Article CAS PubMed Google Scholar
Sadik F, Dastider AG, Subah MR, et al. A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images ✩. Comput Biol Med. 2022;149: 105806. https://doi.org/10.1016/j.compbiomed.2022.105806.
Article CAS PubMed PubMed Central Google Scholar
Feki I, Ammar S, Kessentini Y, Muhammad K. Federated learning for COVID-19 screening from Chest X-ray images. Appl Soft Comput. 2021;106: 107330. https://doi.org/10.1016/j.asoc.2021.107330.
Article PubMed PubMed Central Google Scholar
Shorten C, Khoshgoftaar TM, Furht B. Deep learning applications for COVID-19. J Big Data. 2021. https://doi.org/10.1186/s40537-020-00392-9.
Article PubMed PubMed Central Google Scholar
Goel K, Sindhgatta R, Kalra S, et al. The effect of machine learning explanations on user trust for automated diagnosis of COVID-19. Comput Biol Med. 2022;146: 105587. https://doi.org/10.1016/j.compbiomed.2022.105587.
Article CAS PubMed PubMed Central Google Scholar
Bertsimas D, Borenstein A, Mingardi L, et al. Personalized prescription of ACEI/ARBs for hypertensive COVID-19 patients. Health Care Manag Sci. 2021;24:339–55. https://doi.org/10.1007/s10729-021-09545-5.
Article PubMed PubMed Central Google Scholar
Liu Y, Qin J, Fan Y, et al. Estimation of infection density and epidemic size of COVID - 19 using the back—calculation algorithm. Heal Inf Sci Syst. 2020. https://doi.org/10.1007/s13755-020-00122-8.
Yang Y, Li Y, Chen R, et al. Risk prediction of renal failure for chronic disease population based on electronic health record big data. Big Data Res. 2021. https://doi.org/10.1016/j.bdr.2021.100234.
Comments (0)