Efficient management of pulmonary embolism diagnosis using a two-step interconnected machine learning model based on electronic health records data

Banerjee I, Sofela M, Yang J, et al. Development and performance of the pulmonary embolism result forecast model (PERFORM) for computed tomography clinical decision support. JAMA Netw Open. 2019. https://doi.org/10.1001/jamanetworkopen.2019.8719.

Article  PubMed  PubMed Central  Google Scholar 

Ma H, Sheng W, Li J, et al. A novel hierarchical machine learning model for hospital-acquired venous thromboembolism risk assessment among multiple-departments. J Biomed Inform. 2021;122: 103892. https://doi.org/10.1016/j.jbi.2021.103892.

Article  PubMed  Google Scholar 

Cano-Espinosa C, Cazorla M, González G. Computer aided detection of pulmonary embolism using multi-slice multi-axial segmentation. Appl Sci. 2020. https://doi.org/10.3390/APP10082945.

Article  Google Scholar 

Huang SC, Kothari T, Banerjee I, et al. PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digit Med. 2020. https://doi.org/10.1038/s41746-020-0266-y.

Article  PubMed  PubMed Central  Google Scholar 

Shi L, Rajan D, Abedin S, et al (2020) Automatic diagnosis of pulmonary embolism using an attention-guided framework: a large-scale study. In Medical imaging with deep learning, pp 743–754. PMLR

Shi L, Dehghan E (2020) Automatic diagnosis of pulmonary embolism using an attention-guided framework : a large-scale study. 1–12

Kiourt C, Feretzakis G, Dalamarinis K, Kalles D (2021) Pulmonary embolism identification in computerized tomography pulmonary angiography scans with deep learning technologies in COVID-19 patients. arXiv:2105.11187

Valle C, Bonaffini PA, Dal Corso M, et al. Association between pulmonary embolism and COVID-19 severe pneumonia: experience from two centers in the core of the infection Italian peak. Eur J Radiol. 2021. https://doi.org/10.1016/j.ejrad.2021.109613.

Article  PubMed  PubMed Central  Google Scholar 

Sakr Y, Giovini M, Leone M, et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann Intensive Care. 2020;10:1–13.

Article  Google Scholar 

Thachil R, Nagraj S, Kharawala A, Sokol SI. Pulmonary embolism in women: a systematic review of the current literature. J Cardiovasc Dev Dis. 2022. https://doi.org/10.3390/jcdd9080234.

Article  PubMed  PubMed Central  Google Scholar 

Morís DI, de Moura Ramos JJ, Buján JN, Hortas MO. Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images. Expert Syst Appl. 2021;185: 115681. https://doi.org/10.1016/j.eswa.2021.115681.

Article  PubMed  PubMed Central  Google Scholar 

Kiourt C, Feretzakis G, Dalamarinis K, et al (2021) Pulmonary embolism identification in computerized tomography pulmonary angiography scans with deep learning technologies in COVID-19 patients. arXiv:2105.11187

Mountain D, Keijzers G, Chu K, et al. Correction: RESPECT-ED: rates of pulmonary emboli (PE) and sub-segmental PE with modern computed tomographic pulmonary angiograms in emergency departments: a multi-center observational study finds significant yield variation, uncorrelated with use or smal. PLoS ONE. 2017;12:2015–8. https://doi.org/10.1371/journal.pone.0184219.

Article  Google Scholar 

Kocher KE, Meurer WJ, Fazel R, Scott PA. National trends in use of computed tomography in the emergency department. YMEM. 2011;58:452-462.e3. https://doi.org/10.1016/j.annemergmed.2011.05.020.

Article  Google Scholar 

Wang RC, Bent S, Weber E, et al. The impact of clinical decision rules on computed tomography use and yield for pulmonary embolism: a systematic review and meta-analysis. Ann Emerg Med. 2016;67:693-701.e3. https://doi.org/10.1016/j.annemergmed.2015.11.005.

Article  PubMed  Google Scholar 

Shahid O, Nasajpour M, Pouriyeh S, et al. Machine learning research towards combating COVID-19: virus detection, spread prevention, and medical assistance. J Biomed Inform. 2021;117: 103751. https://doi.org/10.1016/j.jbi.2021.103751.

Article  PubMed  PubMed Central  Google Scholar 

Rucco M, Rodrigues DS, Merelli E, et al. Neural hypernetwork approach for pulmonary embolism diagnosis. BMC Res Notes. 2015. https://doi.org/10.1186/s13104-015-1554-5.

Article  PubMed  PubMed Central  Google Scholar 

Puaschunder JM. The potential for artificial intelligence in healthcare. SSRN Electron J. 2020;6:94–8. https://doi.org/10.2139/ssrn.3525037.

Article  Google Scholar 

Rysavy M. Evidence-based medicine: a science of uncertainty and an art of probability. Virtual Mentor. 2013;15:4–8. https://doi.org/10.1001/virtualmentor.2013.15.1.fred1-1301.

Article  PubMed  Google Scholar 

Menegotto AB, Becker CDL, Cazella SC. Computer-aided diagnosis of hepatocellular carcinoma fusing imaging and structured health data. Heal Inf Sci Syst. 2021. https://doi.org/10.1007/s13755-021-00151-x.

Article  Google Scholar 

Wu C, Guo S, Hong Y, et al. Discrimination and conversion prediction of mild cognitive impairment using convolutional neural networks. Quant Imaging Med Surg. 2018;8:992–1003.

Article  PubMed  PubMed Central  Google Scholar 

Fisher CK, Smith AM, Walsh JR, et al. Machine learning for comprehensive forecasting of Alzheimer’s disease progression. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-49656-2.

Article  PubMed  PubMed Central  Google Scholar 

Arco JE, Ramírez J, Górriz JM, Ruz M. Data fusion based on Searchlight analysis for the prediction of Alzheimer’s disease. Expert Syst Appl. 2021. https://doi.org/10.1016/j.eswa.2021.115549.

Article  Google Scholar 

Thabtah F, Spencer R, Ye Y. The correlation of everyday cognition test scores and the progression of Alzheimer’s disease: a data analytics study. Heal Inf Sci Syst. 2020. https://doi.org/10.1007/s13755-020-00114-8.

Article  Google Scholar 

Ryan L, Mataraso S, Siefkas A, et al. A machine learning approach to predict deep venous thrombosis among hospitalized patients. Clin Appl Thromb. 2021. https://doi.org/10.1177/1076029621991185.

Article  Google Scholar 

Wiener RS, Gould MK, Arenberg DA, et al. An official American Thoracic Society/American College of Chest Physicians policy statement: implementation of low-dose computed tomography lung cancer screening programs in clinical practice. Am J Respir Crit Care Med. 2015;192:881–91. https://doi.org/10.1164/rccm.201508-1671ST.

Article  PubMed  PubMed Central  Google Scholar 

Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020;41:1858. https://doi.org/10.1093/eurheartj/ehaa254.

Article  CAS  PubMed  Google Scholar 

Sadik F, Dastider AG, Subah MR, et al. A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images ✩. Comput Biol Med. 2022;149: 105806. https://doi.org/10.1016/j.compbiomed.2022.105806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feki I, Ammar S, Kessentini Y, Muhammad K. Federated learning for COVID-19 screening from Chest X-ray images. Appl Soft Comput. 2021;106: 107330. https://doi.org/10.1016/j.asoc.2021.107330.

Article  PubMed  PubMed Central  Google Scholar 

Shorten C, Khoshgoftaar TM, Furht B. Deep learning applications for COVID-19. J Big Data. 2021. https://doi.org/10.1186/s40537-020-00392-9.

Article  PubMed  PubMed Central  Google Scholar 

Goel K, Sindhgatta R, Kalra S, et al. The effect of machine learning explanations on user trust for automated diagnosis of COVID-19. Comput Biol Med. 2022;146: 105587. https://doi.org/10.1016/j.compbiomed.2022.105587.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertsimas D, Borenstein A, Mingardi L, et al. Personalized prescription of ACEI/ARBs for hypertensive COVID-19 patients. Health Care Manag Sci. 2021;24:339–55. https://doi.org/10.1007/s10729-021-09545-5.

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Qin J, Fan Y, et al. Estimation of infection density and epidemic size of COVID - 19 using the back—calculation algorithm. Heal Inf Sci Syst. 2020. https://doi.org/10.1007/s13755-020-00122-8.

Article  Google Scholar 

Yang Y, Li Y, Chen R, et al. Risk prediction of renal failure for chronic disease population based on electronic health record big data. Big Data Res. 2021. https://doi.org/10.1016/j.bdr.2021.100234.

Article 

Comments (0)

No login
gif