Optimised deep k-nearest neighbour’s based diabetic retinopathy diagnosis(ODeep-NN) using retinal images

Islam MM, Yang HC, Poly TN, Jian WS, Li YCJ. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: a systematic review and meta-analysis. Comput Methods Programs Biomed. 2020;191:105320.

Article  PubMed  Google Scholar 

Pires R, Avila S, Wainer J, Valle E, Abramoff MD, Rocha A. A data-driven approach to referable diabetic retinopathy detection. Artif Intell Med. 2019;96:93–106.

Article  PubMed  Google Scholar 

Shankar K, Sait ARW, Gupta D, Lakshmanaprabu SK, Khanna A, Pandey HM. Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model. Pattern Recognit Lett. 2020;133:210–6.

Article  ADS  Google Scholar 

Gayathri S, Gopi VP, Palanisamy P. A lightweight CNN for diabetic retinopathy classification from fundus images. Biomed Signal Process Control. 2020;62:102115.

Article  Google Scholar 

Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16.

Article  PubMed  Google Scholar 

Bäcklund L, Algvere P, Rosenqvist U. New blindness in diabetes reduced by more than one-third in Stockholm County. Diabet Med. 1997;14(9):732–40.

Article  PubMed  Google Scholar 

Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. JAMA. 2003;290(15):2057–60.

Article  CAS  PubMed  Google Scholar 

Canayaz M. MH-COVIDNet: diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images. Biomed Signal Process Control. 2021;64:102257.

Article  PubMed  Google Scholar 

Dwivedi SA, Attry A. (2021). Juxtaposing deep learning models efficacy for ocular disorder detection of diabetic retinopathy for ophthalmoscopy. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). IEEE.

Dai L, Wu L, Li H, Cai C, Wu Q, Kong H, Jia W. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat commun. 2021;12(1):3242.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Jena PK, Khuntia B, Palai C, Nayak M, Mishra TK, Mohanty SN. A novel approach for diabetic retinopathy screening using asymmetric deep learning features. Big Data Cogn Comput. 2023;7(1):25.

Article  Google Scholar 

Saranya P, Pranati R, Patro SS. Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models. Multimed Tools Appl. 2023. https://doi.org/10.1007/s11042-023-15045-1.

Article  Google Scholar 

Tsiknakis N, Theodoropoulos D, Manikis G, Ktistakis E, Boutsora O, Berto A, Marias K. Deep learning for diabetic retinopathy detection and classification based on fundus images: a review. Comput Biol Med. 2021;135:104599.

Article  PubMed  Google Scholar 

Burcu OLTU, Karaca BK, Erdem H, Özgür A. A systematic review of transfer learning-based approaches for diabetic retinopathy detection. Gazi Univ J Sci. 2021. https://doi.org/10.35378/gujs.1081546.

Article  Google Scholar 

Badgujar RD, Deore PJ. Hybrid nature inspired SMO-GBM classifier for exudate classification on fundus retinal images. IRBM. 2019;40(2):69–77.

Article  Google Scholar 

Mrad Y, Elloumi Y, Akil M, Bedoui MH. A fast and accurate method for glaucoma screening from smartphone-captured fundus images. Irbm. 2022;43(4):279–89.

Article  Google Scholar 

Wu Y, Hu Z. (2019). Recognition of diabetic retinopathy based on transfer learning. In 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE.

Khalifa NEM, Loey M, Taha MHN, Mohamed HN E. T. Deep transfer learning models for medical diabetic retinopathy detection. Acta Informatica Med. 2019;27(5):327.

Article  Google Scholar 

Gangwar AK, Ravi V. iabetic retinopathy detection using transfer learning and deep learning. Evol Comput Intell: Front Intell Comput: Theory Appl. 2021;1:679–89.

Google Scholar 

Patel R, Chaware A. (2020). Transfer learning with fine-tuned MobileNetV2 for diabetic retinopathy. In 2020 international conference for emerging technology (INCET). IEEE.

Al-Smadi M, Hammad M, Baker QB, Sa’ad A. A transfer learning with deep neural network approach for diabetic retinopathy classification. Int J Electr Comput Eng. 2021;11(4):3492.

Google Scholar 

Salvi RS, Labhsetwar SR, Kolte PA, Venkatesh VS, Baretto AM. (2021). Predictive analysis of diabetic retinopathy with transfer learning. In 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). IEEE.

Sanjana S, Shadin NS, Farzana M. (2021). Automated diabetic retinopathy detection using transfer learning models. In 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE.

Al-Haija QA, Adebanjo A. (2020). Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)). IEEE.

Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;43:635–40.

Article  PubMed  PubMed Central  Google Scholar 

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Fei-Fei L. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211–52.

Article  MathSciNet  Google Scholar 

Jha R, Bhattacharjee V, Mustafi A. Transfer Learning with Feature Extraction Modules for Improved Classifier Performance on Medical Image Data. Sci Program. 2022. https://doi.org/10.1155/2022/4983174.

Article  Google Scholar 

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

Article  Google Scholar 

He K, Zhang X, Ren S, Sun J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.

He K, Zhang X, Ren S, Sun J. (2016). Identity mappings in deep residual networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14.

He K, Zhang X, Ren S, Sun J. Deep residual learning. Image Recogn. 2015. https://doi.org/10.1109/CVPR.2016.90.

Article  Google Scholar 

Ji Q, Huang J, He W, Sun Y. Optimized deep convolutional neural networks for identification of macular diseases from optical coherence tomography images. Algorithms. 2019;12(3):51.

Article  MathSciNet  Google Scholar 

Apdullah Y. (2023). Feature selection (https://github.com/apdullahyayik/Feature-Selection), GitHub. Accessed 16 June 2023.

Emary E, Zawbaa HM, Hassanien AE. Binary grey wolf optimization approaches for feature selection. Neurocomputing. 2016;172:371–81.

Article  Google Scholar 

Hans R, Kaur H. Binary multi-verse optimization (BMVO) approaches for feature selection. Int J Interact Multimedia Artif Intell. 2020;6:91–106.

Google Scholar 

Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.

Article  MathSciNet  Google Scholar 

Rath SR. (2019) Diabetic retinopathy 224 × 224 gaussian filtered, https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered.

Goldberg D. Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley; 1989.

Google Scholar 

Kennedy J, Eberhart R. (1995) Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Network, Perth, Australia.

Simon D. Biogeography-based optimization. IEEE Trans Evol Comput. 2008;12:702–13.

Article  Google Scholar 

Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014;69:46–61.

Article  Google Scholar 

Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw. 2017;114:163–91.

Article  Google Scholar 

Ramachandran SK, Manikandan P. An efficient ALO-based ensemble classification algorithm for medical big data processing. Int J Med Eng Inf. 2021;13(1):54–63.

Google Scholar 

Thota NB, Reddy DU. (2020). Improving the accuracy of diabetic retinopathy severity classification with transfer learning. In 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE.

Ramchandre S, Patil B, Pharande S, Javali K, Pande H. (2020). A deep learning approach for diabetic retinopathy detection using transfer learning. In 2020 IEEE International Conference for Innovation in Technology (INOCON). IEEE.

Islam KT, Wijewickrema S, O’Leary S. (2019). Identifying diabetic retinopathy from oct images using deep transfer learning with artificial neural networks. In 2019 IEEE 32nd international symposium on computer-based medical systems (CBMS). IEEE.

Dong B, Wang X, Qiang X, Du F, Gao L, Wu Q, Dai C. A multi-branch convolutional neural network for screening and staging of diabetic retinopathy based on wide-field optical coherence tomography angiography. IRBM. 2022;43(6):614–20.

Article  Google Scholar 

Comments (0)

No login
gif