Climie R, et al. Vascular ageing in youth: a call to action. Heart Lung Circ. 2021. https://doi.org/10.1016/j.hlc.2021.06.516.
Laurent S, Katsahian S, Fassot C, Tropeano A, Gautier I, Laloux B, Boutouyrie P. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6. https://doi.org/10.1161/01.STR.0000065428.03209.64.
Kotsis V, Antza C, Doundoulakis I, Stabouli S. Markers of early vascular ageing. Curr Pharm Des. 2017;23(22):3200–4. https://doi.org/10.2174/1381612823666170328142433.
Kılıç A, et al. Role of dyslipidemia in early vascular aging syndrome. Turkish J Med Sci. 2021;51(2):727–34. https://doi.org/10.3906/sag-2008-165.
Nilsson P, et al. Early vascular aging in hypertension. Front Cardiovasc Med. 2020;7:6. https://doi.org/10.3389/fcvm.2020.00006.
Bikia V, et al. Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research. Eur Heart J-Digital Health. 2021;2(4):676–90. https://doi.org/10.1093/ehjdh/ztab089.
Hors-Fraile S, et al. Analyzing recommender systems for health promotion using a multidisciplinary taxonomy: a scoping review. Int J Med Inform. 2017;114:143–55. https://doi.org/10.1016/j.ijmedinf.2017.12.018.
Saz-Lara A, et al. Early vascular ageing as an index of cardiovascular risk in healthy adults: confirmatory factor analysis from the EVasCu study. Cardiovasc Diabetol. 2023;22(1):209. https://doi.org/10.1186/s12933-023-01947-9.
Cavero-Redondo I, et al. Validation of an early vascular ageing construct model for comprehensive cardiovascular risk assessment using external risk indicators for improved clinical utility: data from the EVasCu study. Cardiovasc Diabetol. 2024;23(1):33. https://doi.org/10.1186/s12933-023-02104-y.
Oliveira JS, et al. Effect of interventions using physical activity trackers on physical activity in people aged 60 years and over: a systematic review and meta-analysis. Br J Sports Med. 2020;54(20):1188–94. https://doi.org/10.1136/bjsports-2018-100324.
Espín V, Hurtado MV, Noguera M. Nutrition for Elder Care: a nutritional semantic recommender system for the elderly. Expert Syst. 2016;33:201–10. https://doi.org/10.1111/exsy.12143.
Giabbanelli PJ, Crutzen R. Supporting self-management of obesity using a novel game architecture. Health Inform J. 2015;21(3):223–36. https://doi.org/10.1177/1460458214521051.
Hidalgo JI, et al. glUCModel: a monitoring and modeling system for chronic diseases applied to diabetes. J Biomed Inform. 2014;48:183–92. https://doi.org/10.1016/j.jbi.2013.12.015.
Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform. 2017;18(1):18. https://doi.org/10.1186/s12859-016-1415-9.
Potter G, et al. Putting the collaborator back into collaborative filtering. 2008. https://doi.org/10.1145/1722149.1722152.
Nilsson P, et al. The concept of early vascular ageing—an update in 2015. EMJ Diabetes. 2015. https://doi.org/10.33590/emjdiabet/10312465.
Tavallali P, et al. Artificial intelligence estimation of carotid-femoral pulse wave velocity using carotid waveform. Sci Rep. 2018;8(1):1014. https://doi.org/10.1038/s41598-018-19457-0.
Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017;121(9):1092–101. https://doi.org/10.1161/CIRCRESAHA.117.311312.
Alaa AM, et al. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423604 UK Biobank participants. PLoS ONE. 2019;14(5): e0213653. https://doi.org/10.1371/journal.pone.0213653.
Al’Aref SJ, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry. Eur Heart J. 2020;41(3):359–67. https://doi.org/10.1093/eurheartj/ehz565.
Garcia-Carretero R, et al. Pulse wave velocity and machine learning to predict cardiovascular outcomes in prediabetic and diabetic populations. J Med Syst. 2019;44(1):16. https://doi.org/10.1007/s10916-019-1479-y.
Jamthikar A, et al. A low-cost machine learning-based cardiovascular/stroke risk assessment system: integration of conventional factors with image phenotypes. Cardiovasc Diagn Ther. 2019;9(5):420–30. https://doi.org/10.21037/cdt.2019.09.03.
Kakadiaris IA, et al. Machine learning outperforms ACC/AHA CVD risk calculator in MESA. J Am Heart Assoc. 2018;7(22):e009476. https://doi.org/10.1161/JAHA.118.009476.
Sorelli M, et al. Detecting vascular age using the analysis of peripheral pulse. IEEE Trans Biomed Eng. 2018;65(12):2742–50. https://doi.org/10.1109/TBME.2018.2814630.
Vallée A, et al. Added value of aortic pulse wave velocity index in a predictive diagnosis decision tree of coronary heart disease. Am J Hypertens. 2019;32(4):375–83. https://doi.org/10.1093/ajh/hpz004.
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.
Article MathSciNet Google Scholar
Loohach Richa, et al. Effect of distance functions on simple K-means clustering algorithm. Int J Comput Appl. 2012;49:7–9. https://doi.org/10.5120/7629-0698.
Nocedal J, et al. Numerical optimization. New York: Springer; 2006. https://doi.org/10.1007/b98874.
Caliński Tadeusz, Harabasz Joachim. A dendrite method for cluster analysis. Commun Stat-Theory Methods. 1974;3:1–27.
Article MathSciNet Google Scholar
Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 1979;1(2):224–7. https://doi.org/10.1109/TPAMI.1979.
Rousseeuw P. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20(1):53–65. https://doi.org/10.1016/0377-0427(87)90125-7.
Rahimi SA, Cwintal M, Huang Y, Ghadiri P, Grad R, Poenaru D, Gore G, Zomahoun H, Légaré F, Pluye P. Application of artificial intelligence in shared decision making: scoping review. JMIR Med Inform. 2022;10:36199. https://doi.org/10.2196/36199.
Poon AIF, Sung JJY. Opening the black box of AI-medicine. J Gastroenterol Hepatol. 2021;36(3):581–4. https://doi.org/10.1111/jgh.15384.
Garcia-Vidal C, et al. Artificial intelligence to support clinical decision-making processes. EBioMedicine. 2019;46:27–9. https://doi.org/10.1016/j.ebiom.2019.07.019.
Eagleson R. y Sandrine de Ribaupierre. Human-machine interfaces for medical imaging and clinical interventions. 2020.
Haynes R, McKibbon K, Kanani R. Systematic review of randomised trials of interventions to assist patients to follow prescriptions for medications. The Lancet. 1996;348:383–6. https://doi.org/10.1016/S0140-6736(96)01073-2.
Pereira MG, Pedras S, Ferreira G, Machado J. Differences, predictors, and moderators of therapeutic adherence in patients recently diagnosed with type 2 diabetes. J Health Psychol. 2018;25:1871–81. https://doi.org/10.1177/1359105318780505.
Yuan K, Bentler P. Effect of outliers on estimators and tests in covariance structure analysis. Br J Math Stat Psychol. 2001;54(Pt 1):161–75. https://doi.org/10.1348/000711001159366.
Kaya IE, Pehlivanli AC, Sekizkardes EG, Ibrikci T. PCA based clustering for brain tumor segmentation of T1w MRI images. Comput Methods Prog Biomed. 2017;140:19–28. https://doi.org/10.1016/j.cmpb.2016.11.011.
Flores AM, et al. Unsupervised learning for automated detection of coronary artery disease subgroups. J Am Heart Assoc. 2021;10: e021976. https://doi.org/10.1161/JAHA.121.021976.
McClelland RL, et al. Arterial age as a function of coronary artery calcium (from the multi-ethnic study of atherosclerosis [MESA]). Am J Cardiol. 2009;103(1):59–63. https://doi.org/10.1016/j.amjcard.2008.08.031.
Comments (0)