Dietary restriction plus exercise change gene expression of Cxcl12 abundant reticular cells in female mice

Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR (2004) American College of Sports Medicine position stand: physical activity and bone health. Med Sci Sports Exerc 36:1985–1996. https://doi.org/10.1249/01.mss.0000142662.21767.58

Article  PubMed  Google Scholar 

Hind K, Truscott JG, Evans JA (2006) Low lumbar spine bone mineral density in both male and female endurance runners. Bone 39:880–885. https://doi.org/10.1016/j.bone.2006.03.012

Article  CAS  PubMed  Google Scholar 

Bilanin JE, Blanchard MS, Russek-Cohen E (1989) Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc 21:66–70. https://doi.org/10.1249/00005768-198902000-00012

Article  CAS  PubMed  Google Scholar 

Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP (2007) American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc 39:1867–1882. https://doi.org/10.1249/mss.0b013e318149f111

Article  PubMed  Google Scholar 

Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, Meyer N, Sherman R, Steffen K, Budgett R, Ljungqvist A (2014) The IOC consensus statement: beyond the female athlete triad-relative energy deficiency in sport (RED-S). Br J Sports Med 48:491–497. https://doi.org/10.1136/bjsports-2014-093502

Article  PubMed  Google Scholar 

Ito E, Sato Y, Kobayashi T, Nakamura S, Kaneko Y, Soma T, Matsumoto T, Kimura A, Miyamoto K, Matsumoto H, Matsumoto M, Nakamura M, Sato K, Miyamoto T (2021) Food restriction reduces cortical bone mass and serum insulin-like growth factor-1 levels and promotes uterine atrophy in mice. Biochem Biophys Res Commun 534:165–171. https://doi.org/10.1016/j.bbrc.2020.11.122

Article  CAS  PubMed  Google Scholar 

Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int 18:641–647. https://doi.org/10.1007/s00198-006-0285-9

Article  CAS  PubMed  Google Scholar 

Liu L, Rosen CJ (2023) New insights into calorie restriction induced bone loss. Endocrinol Metab 38:203–213. https://doi.org/10.3803/EnM.2023.1673

Article  CAS  Google Scholar 

Li Z, Bowers E, Zhu J, Yu H, Hardij J, Bagchi DP, Mori H, Lewis KT, Granger K, Schill RL, Romanelli SM, Abrishami S, Hankenson KD, Singer K, Rosen CJ, MacDougald OA (2022) Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. Elife 11:e78496. https://doi.org/10.7554/eLife.78496

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGrath C, Sankaran JS, Misaghian-Xanthos N, Sen B, Xie Z, Styner MA, Zong X, Rubin J, Styner M (2020) Exercise degrades bone in caloric restriction, despite suppression of marrow adipose tissue (MAT). J Bone Miner Res 35:106–115. https://doi.org/10.1002/jbmr.3872

Article  CAS  PubMed  Google Scholar 

Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA (2018) Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 110:134–140. https://doi.org/10.1016/j.bone.2018.01.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L, Fan H, Logan DW, Schurmann A, Saraiva LR, Schulz TJ (2017) Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20:771-784.e776. https://doi.org/10.1016/j.stem.2017.02.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fazeli PK, Bredella MA, Pachon-Pena G, Zhao W, Zhang X, Faje AT, Resulaj M, Polineni SP, Holmes TM, Lee H, O’Donnell EK, MacDougald OA, Horowitz MC, Rosen CJ, Klibanski A (2021) The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight 6:e138636. https://doi.org/10.1172/jci.insight.138636

Article  PubMed  PubMed Central  Google Scholar 

Omatsu Y, Nagasawa T (2021) Identification of microenvironmental niches for hematopoietic stem cells and lymphoid progenitors-bone marrow fibroblastic reticular cells with salient features. Int Immunol. https://doi.org/10.1093/intimm/dxab092

Article  PubMed  Google Scholar 

Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:154–168. https://doi.org/10.1016/j.stem.2014.06.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–399. https://doi.org/10.1016/j.immuni.2010.08.017

Article  CAS  PubMed  Google Scholar 

Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T (2018) Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev 32:359–372. https://doi.org/10.1101/gad.311068.117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486. https://doi.org/10.1002/jbmr.141

Article  PubMed  Google Scholar 

Scheller EL, Troiano N, Vanhoutan JN, Bouxsein MA, Fretz JA, Xi Y, Nelson T, Katz G, Berry R, Church CD, Doucette CR, Rodeheffer MS, Macdougald OA, Rosen CJ, Horowitz MC (2014) Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol 537:123–139. https://doi.org/10.1016/B978-0-12-411619-1.00007-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polineni S, Resulaj M, Faje AT, Meenaghan E, Bredella MA, Bouxsein M, Lee H, MacDougald OA, Klibanski A, Fazeli PK (2020) Red and white blood cell counts are associated with bone marrow adipose tissue, bone mineral density, and bone microarchitecture in premenopausal women. J Bone Miner Res 35:1031–1039. https://doi.org/10.1002/jbmr.3986

Article  CAS  PubMed  Google Scholar 

Goldberg EL, Dixit VD (2019) Bone Marrow: An Immunometabolic Refuge during Energy Depletion. Cell Metab 30:621–623. https://doi.org/10.1016/j.cmet.2019.08.022

Article  CAS  PubMed  Google Scholar 

Collins N, Han SJ, Enamorado M, Link VM, Huang B, Moseman EA, Kishton RJ, Shannon JP, Dixit D, Schwab SR, Hickman HD, Restifo NP, McGavern DB, Schwartzberg PL, Belkaid Y (2019) The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178:1088-1101.e1015. https://doi.org/10.1016/j.cell.2019.07.049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, Ding SY, Bredella MA, Fazeli PK, Khoury B, Jepsen KJ, Pilch PF, Klibanski A, Rosen CJ, MacDougald OA (2015) Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 6:7808. https://doi.org/10.1038/ncomms8808

Article  CAS  PubMed  PubMed Central  Google Scholar 

Devlin MJ, Rosen CJ (2015) The bone-fat interface: basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol 3:141–147. https://doi.org/10.1016/s2213-8587(14)70007-5

Article  CAS  PubMed  Google Scholar 

Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T (2014) Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508:536–540. https://doi.org/10.1038/nature13071

Article  CAS  PubMed  Google Scholar 

Aaron N, Kraakman MJ, Zhou Q, Liu Q, Costa S et al (2021) Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. Elife 10:e69209. https://doi.org/10.7554/eLife.69209

Article 

Comments (0)

No login
gif