Buckley L, Humphrey MB (2018) Glucocorticoid-induced osteoporosis. N Engl J Med 379:2547–2556. https://doi.org/10.1056/NEJMcp1800214
Chotiyarnwong P, McCloskey EV (2020) Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol 16:437–447. https://doi.org/10.1038/s41574-020-0341-0
Gregson CL, Armstrong DJ, Bowden J et al (2022) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. https://doi.org/10.1007/s11657-022-01061-5
Article PubMed PubMed Central Google Scholar
Adami G, Saag KG (2019) Glucocorticoid-induced osteoporosis update. Curr Opin Rheumatol 31:388–393. https://doi.org/10.1097/BOR.0000000000000608
Article CAS PubMed Google Scholar
Watts NB, GLOW investigators, (2014) Insights from the global longitudinal study of osteoporosis in women (GLOW). Nat Rev Endocrinol 10:412–422. https://doi.org/10.1038/nrendo.2014.55
Silverman S, Curtis J, Saag K et al (2015) International management of bone health in glucocorticoid-exposed individuals in the observational GLOW study. Osteoporos Int 26:419–420. https://doi.org/10.1007/s00198-014-2883-2
Article CAS PubMed Google Scholar
Meszaros K, Patocs A (2020) Glucocorticoids Influencing Wnt/β-Catenin Pathway; Multiple Sites. Heterogeneous Eff Mol 25:1489. https://doi.org/10.3390/molecules25071489
Komori T (2016) Glucocorticoid signaling and bone biology. Horm Metab Res 48:755–763. https://doi.org/10.1055/s-0042-110571
Article CAS PubMed Google Scholar
Greenblatt MB, Shin DY, Oh H et al (2016) MEKK2 mediates an alternative β-catenin pathway that promotes bone formation. Proc Natl Acad Sci U S A 113:E1226-1235. https://doi.org/10.1073/pnas.1600813113
Article CAS PubMed PubMed Central Google Scholar
Yamashita M, Ying S-X, Zhang G-M et al (2005) Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121:101–113. https://doi.org/10.1016/j.cell.2005.01.035
Article CAS PubMed PubMed Central Google Scholar
Lawson LY, Brodt MD, Migotsky N et al (2022) Osteoblast-specific Wnt secretion is required for skeletal homeostasis and loading-induced bone formation in adult mice. J Bone Miner Res 37:108–120. https://doi.org/10.1002/jbmr.4445
Article CAS PubMed Google Scholar
Karner CM, Long F (2017) Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci 74:1649–1657. https://doi.org/10.1007/s00018-016-2425-5
Article CAS PubMed Google Scholar
Chen X, Wang J, Tang L et al (2022) The therapeutic effect of Fufang Zhenshu Tiaozhi (FTZ) on osteoclastogenesis and ovariectomized-induced bone loss: evidence from network pharmacology, molecular docking and experimental validation. Aging (Albany NY) 14:5727–5748. https://doi.org/10.18632/aging.204172
Article CAS PubMed Google Scholar
Luo D, Li J, Chen K et al (2018) Untargeted metabolomics reveals the protective effect of Fufang Zhenshu Tiaozhi (FTZ) on aging-induced osteoporosis in mice. Front Pharmacol 9:1483. https://doi.org/10.3389/fphar.2018.01483
Article CAS PubMed Google Scholar
Huang X, Zhan H, Yang J et al (2021) Long-term effect of Zhenzhu Tiaozhi Capsule (FTZ) on hyperlipidemia: 2-year results from a retrospective study using electronic medical records. Evid Based Complement Alternat Med 2021:6264414. https://doi.org/10.1155/2021/6264414
Article PubMed PubMed Central Google Scholar
Luo D, Chen K, Li J et al (2020) Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomed Pharmacother 121:109550. https://doi.org/10.1016/j.biopha.2019.109550
Article CAS PubMed Google Scholar
Diao H, Cheng J, Huang X et al (2022) The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against atherosclerosis by suppressing EndMT via modulating Akt1/β-catenin signaling pathway. J Ethnopharmacol 293:115261. https://doi.org/10.1016/j.jep.2022.115261
Article CAS PubMed Google Scholar
Wang H, Tan H, Zhan W et al (2021) Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs. J Ethnopharmacol 274:114056. https://doi.org/10.1016/j.jep.2021.114056
Article CAS PubMed Google Scholar
Guo J, Bei W, Hu Y et al (2011) A new TCM formula FTZ lowers serum cholesterol by regulating HMG-CoA reductase and CYP7A1 in hyperlipidemic rats. J Ethnopharmacol 135:299–307. https://doi.org/10.1016/j.jep.2011.03.012
Xu Y, Tang J, Guo Q et al (2021) Traditional Chinese medicine formula FTZ protects against polycystic ovary syndrome through modulating adiponectin-mediated fat-ovary crosstalk in mice. J Ethnopharmacol 268:113587. https://doi.org/10.1016/j.jep.2020.113587
Article CAS PubMed Google Scholar
Komori T (2015) Animal models for osteoporosis. Eur J Pharmacol 759:287–294. https://doi.org/10.1016/j.ejphar.2015.03.028
Article CAS PubMed Google Scholar
Lane NE (2019) Glucocorticoid-Induced Osteoporosis: New Insights into the Pathophysiology and Treatments. Curr Osteoporos Rep 17:1–7. https://doi.org/10.1007/s11914-019-00498-x
Article PubMed PubMed Central Google Scholar
Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328. https://doi.org/10.1007/s00198-007-0394-0
Article CAS PubMed Google Scholar
Kenkre JS, Bassett J (2018) The bone remodelling cycle. Ann Clin Biochem 55:308–327. https://doi.org/10.1177/0004563218759371
Article CAS PubMed Google Scholar
An J, Yang H, Zhang Q et al (2016) Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 147:46–58. https://doi.org/10.1016/j.lfs.2016.01.024
Article CAS PubMed Google Scholar
Wang T, Liu Q, Tjhioe W et al (2017) Therapeutic potential and outlook of alternative medicine for osteoporosis. Curr Drug Targets 18:1051–1068. https://doi.org/10.2174/1389450118666170321105425
Article CAS PubMed Google Scholar
Jiang Y, Lu Y, Jiang X et al (2020) Glucocorticoids induce osteoporosis mediated by glucocorticoid receptor-dependent and -independent pathways. Biomed Pharmacother 125:109979. https://doi.org/10.1016/j.biopha.2020.109979
Article CAS PubMed Google Scholar
Messina OD, Vidal M, Torres JAM et al (2022) Evidence based Latin American guidelines of clinical practice on prevention, diagnosis, management and treatment of glucocorticoid induced osteoporosis. A 2022 update : This manuscript has been produced under the auspices of the committee of national societies (CNS) and the committee of scientific advisors (CSA) of the international osteoporosis foundation (IOF). Aging Clin Exp Res 34:2591–2602. https://doi.org/10.1007/s40520-022-02261-2
Comments (0)