Progress of Mitochondrial Function Regulation in Cardiac Regeneration

WHO. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 2021.

Wu X, Reboll MR, Korf-Klingebiel M, et al. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021;117(5):1257–73.

Article  CAS  PubMed  Google Scholar 

Guo Q-Y, Yang J-Q, Feng X-X, et al. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Med Res. 2023;10(1):18.

Article  Google Scholar 

Sayers JR, Riley PR. Heart regeneration: beyond new muscle and vessels. Cardiovasc Res. 2021;117(3):727–42.

Article  CAS  PubMed  Google Scholar 

Harrington J, Jones WS, Udell JA, et al. Acute Decompensated Heart Failure in the Setting of Acute Coronary Syndrome. JACC. Heart Failure. 2022;10(6):404–14.

Article  PubMed  Google Scholar 

Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol. 2021;18(5):368–79.

Article  PubMed  PubMed Central  Google Scholar 

Harrington J, Petrie MC, Anker SD, et al. Evaluating the Application of Chronic Heart Failure Therapies and Developing Treatments in Individuals With Recent Myocardial Infarction: A Review. JAMA Cardiol. 2022;7(10):1067–75.

Article  PubMed  Google Scholar 

Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rigaud VOC, Hoy RC, Kurian J, et al. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19. Circulation. 2023;147(4):324–37.

Article  CAS  PubMed  Google Scholar 

Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56(2):130–40.

Article  CAS  PubMed  Google Scholar 

Huang S, Li X, Zheng H, et al. Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration After Myocardial Infarction in Adult Mice. Circulation. 2019;139(25):2857–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardoso AC, Lam NT, Savla JJ, et al. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nat Metab. 2020;2(2):167–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Si X, Zheng H, Wei G, et al. circRNA Hipk3 Induces Cardiac Regeneration after Myocardial Infarction in Mice by Binding to Notch1 and miR-133a. Mol Ther Nucleic Acids. 2020;21:636–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fajardo VM, Feng I, Chen BY, et al. GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Sci Rep. 2021;11(1):8669.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng H, Huang S, Wei G, et al. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther: J Am Soc Gene Ther. 2022;30(11):3477–98.

Article  CAS  Google Scholar 

Ma W, Wang X, Sun H, et al. Oxidant stress-sensitive circRNA Mdc1 controls cardiomyocyte chromosome stability and cell cycle re-entry during heart regeneration. Pharmacol Res. 2022;184:106422.

Article  CAS  PubMed  Google Scholar 

Li X, Wu F, Günther S, et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature. 2023;622(7983):619–26.

CAS  PubMed  PubMed Central  Google Scholar 

Kankuri E, Finckenberg P, Leinonen J, et al. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med. 2023;55(4):806–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Li S, Zhang Y, et al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol. 2021;41:101910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu H, Zhang F, Yan P, et al. LARP7 Protects Against Heart Failure by Enhancing Mitochondrial Biogenesis. Circulation. 2021;143(20):2007–22.

Article  CAS  PubMed  Google Scholar 

Rigaud VO, Zarka C, Kurian J, et al. UCP2 modulates cardiomyocyte cell cycle activity, acetyl-CoA, and histone acetylation in response to moderate hypoxia. JCI Insight. 2022;7(15)

Chen X-Z, Li X-M, Xu S-J, et al. TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m(7)G methylation of ATF5 mRNA. Cell Death Differ. 2023;30(7):1786–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Northam C, LeMoine CMR. Metabolic regulation by the PGC-1α and PGC-1β coactivators in larval zebrafish (Danio rerio). Comparative biochemistry and physiology. Part A, Mol Integ Physiol. 2019;234:60–7.

Article  CAS  Google Scholar 

Sakamoto T, Matsuura TR, Wan S, et al. A Critical Role for Estrogen-Related Receptor Signaling in Cardiac Maturation. Circ Res. 2020;126(12):1685–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, Chen H, Zhang L, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 2021;17(5):1142–56.

Article  CAS  PubMed  Google Scholar 

Paredes A, Justo-Méndez R, Jiménez-Blasco D, et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature. 2023;618(7964):365–73.

Article  CAS  PubMed  Google Scholar 

Malik N, Ferreira BI, Hollstein PE, et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 2023;380(6642):eabj5559.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramachandra CJA, Chua J, Cong S, et al. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res. 2021;117(3):694–711.

Article  CAS  PubMed  Google Scholar 

Brown DA, Perry JB, Allen ME, et al. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14(4):238–50.

Article  CAS  PubMed  Google Scholar 

Picard M, Shirihai OS. Mitochondrial signal transduction. Cell Metab. 2022;34(11):1620–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mejia EM, Hatch GM. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr. 2016;48(2):99–112.

Article  CAS  PubMed  Google Scholar 

Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–24.

Article  CAS  PubMed 

Comments (0)

No login
gif