WHO. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 2021.
Wu X, Reboll MR, Korf-Klingebiel M, et al. Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021;117(5):1257–73.
Article CAS PubMed Google Scholar
Guo Q-Y, Yang J-Q, Feng X-X, et al. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Med Res. 2023;10(1):18.
Sayers JR, Riley PR. Heart regeneration: beyond new muscle and vessels. Cardiovasc Res. 2021;117(3):727–42.
Article CAS PubMed Google Scholar
Harrington J, Jones WS, Udell JA, et al. Acute Decompensated Heart Failure in the Setting of Acute Coronary Syndrome. JACC. Heart Failure. 2022;10(6):404–14.
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol. 2021;18(5):368–79.
Article PubMed PubMed Central Google Scholar
Harrington J, Petrie MC, Anker SD, et al. Evaluating the Application of Chronic Heart Failure Therapies and Developing Treatments in Individuals With Recent Myocardial Infarction: A Review. JAMA Cardiol. 2022;7(10):1067–75.
Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.
Article CAS PubMed PubMed Central Google Scholar
Rigaud VOC, Hoy RC, Kurian J, et al. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19. Circulation. 2023;147(4):324–37.
Article CAS PubMed Google Scholar
Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56(2):130–40.
Article CAS PubMed Google Scholar
Huang S, Li X, Zheng H, et al. Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration After Myocardial Infarction in Adult Mice. Circulation. 2019;139(25):2857–76.
Article CAS PubMed PubMed Central Google Scholar
Cardoso AC, Lam NT, Savla JJ, et al. Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nat Metab. 2020;2(2):167–78.
Article CAS PubMed PubMed Central Google Scholar
Si X, Zheng H, Wei G, et al. circRNA Hipk3 Induces Cardiac Regeneration after Myocardial Infarction in Mice by Binding to Notch1 and miR-133a. Mol Ther Nucleic Acids. 2020;21:636–55.
Article CAS PubMed PubMed Central Google Scholar
Fajardo VM, Feng I, Chen BY, et al. GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Sci Rep. 2021;11(1):8669.
Article CAS PubMed PubMed Central Google Scholar
Zheng H, Huang S, Wei G, et al. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther: J Am Soc Gene Ther. 2022;30(11):3477–98.
Ma W, Wang X, Sun H, et al. Oxidant stress-sensitive circRNA Mdc1 controls cardiomyocyte chromosome stability and cell cycle re-entry during heart regeneration. Pharmacol Res. 2022;184:106422.
Article CAS PubMed Google Scholar
Li X, Wu F, Günther S, et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature. 2023;622(7983):619–26.
CAS PubMed PubMed Central Google Scholar
Kankuri E, Finckenberg P, Leinonen J, et al. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med. 2023;55(4):806–17.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Li S, Zhang Y, et al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol. 2021;41:101910.
Article CAS PubMed PubMed Central Google Scholar
Yu H, Zhang F, Yan P, et al. LARP7 Protects Against Heart Failure by Enhancing Mitochondrial Biogenesis. Circulation. 2021;143(20):2007–22.
Article CAS PubMed Google Scholar
Rigaud VO, Zarka C, Kurian J, et al. UCP2 modulates cardiomyocyte cell cycle activity, acetyl-CoA, and histone acetylation in response to moderate hypoxia. JCI Insight. 2022;7(15)
Chen X-Z, Li X-M, Xu S-J, et al. TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m(7)G methylation of ATF5 mRNA. Cell Death Differ. 2023;30(7):1786–98.
Article CAS PubMed PubMed Central Google Scholar
Northam C, LeMoine CMR. Metabolic regulation by the PGC-1α and PGC-1β coactivators in larval zebrafish (Danio rerio). Comparative biochemistry and physiology. Part A, Mol Integ Physiol. 2019;234:60–7.
Sakamoto T, Matsuura TR, Wan S, et al. A Critical Role for Estrogen-Related Receptor Signaling in Cardiac Maturation. Circ Res. 2020;126(12):1685–702.
Article CAS PubMed PubMed Central Google Scholar
Hu Y, Chen H, Zhang L, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy. 2021;17(5):1142–56.
Article CAS PubMed Google Scholar
Paredes A, Justo-Méndez R, Jiménez-Blasco D, et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature. 2023;618(7964):365–73.
Article CAS PubMed Google Scholar
Malik N, Ferreira BI, Hollstein PE, et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 2023;380(6642):eabj5559.
Article CAS PubMed PubMed Central Google Scholar
Ramachandra CJA, Chua J, Cong S, et al. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res. 2021;117(3):694–711.
Article CAS PubMed Google Scholar
Brown DA, Perry JB, Allen ME, et al. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14(4):238–50.
Article CAS PubMed Google Scholar
Picard M, Shirihai OS. Mitochondrial signal transduction. Cell Metab. 2022;34(11):1620–53.
Article CAS PubMed PubMed Central Google Scholar
Mejia EM, Hatch GM. Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr. 2016;48(2):99–112.
Article CAS PubMed Google Scholar
Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–24.
Comments (0)