Pandey A, Keshvani N, Ayers C, Correa A, Drazner MH, Lewis A, et al. Association of cardiac injury and malignant left ventricular hypertrophy with risk of heart failure in African Americans: The Jackson heart study. JAMA Cardiol 2019;4(1):51–8. https://doi.org/10.1001/jamacardio.2018.4300.
Jónsdóttir LS, Sigfússon N, Gudnason V, Sigvaldason H, Thorgeirsson G. Do lipids, blood pressure, diabetes, and smoking confer equal risk of myocardial infarction in women as in men? The Reykjavik Study. J Cardiovasc Risk. 2002;9(2):67–76.
Kang YJ. Cardiac hypertrophy: a risk factor for QT-prolongation and cardiac sudden death. Toxicol Pathol. 2006;34(1):58–66. https://doi.org/10.1080/01926230500419421.
Article CAS PubMed Google Scholar
Messerli FH, Schmieder R. Left ventricular hypertrophy. A cardiovascular risk factor in essential hypertension. Drugs. 1986;31(Suppl 4):192–201. https://doi.org/10.2165/00003495-198600314-00023.
Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600. https://doi.org/10.1038/nrm1983.
Article CAS PubMed Google Scholar
Soudani N, Ghantous CM, Farhat Z, Shebaby WN, Zibara K, Zeidan A. Calcineurin/NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch. Front Physiol. 2016;7:433. https://doi.org/10.3389/fphys.2016.00433.
Article PubMed PubMed Central Google Scholar
You J, Wu J, Zhang Q, Ye Y, Wang S, Huang J, et al. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol. 2018;314(3):H552–62. https://doi.org/10.1152/ajpheart.00212.2017.
Article CAS PubMed Google Scholar
Tanaka S, Fujio Y, Nakayama H. Caveolae-specific CaMKII signaling in the regulation of voltage-dependent calcium channel and cardiac hypertrophy. Front Physiol. 2018;9:1081. https://doi.org/10.3389/fphys.2018.01081.
Article PubMed PubMed Central Google Scholar
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol. 2017;149(12):1065–89. https://doi.org/10.1085/jgp.201711878.
Article CAS PubMed PubMed Central Google Scholar
Jayaraman T, Brillantes AM, Timerman AP, Fleischer S, Erdjument-Bromage H, Tempst P, et al. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem. 1992;267(14):9474–7.
Article CAS PubMed Google Scholar
Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C, et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol. 2003;160(6):919–28. https://doi.org/10.1083/jcb.200211012.
Article CAS PubMed PubMed Central Google Scholar
Respress JL, van Oort RJ, Li N, Rolim N, Dixit SS, deAlmeida A, et al. Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res. 2012;110(11):1474–83. https://doi.org/10.1161/circresaha.112.268094.
Article CAS PubMed PubMed Central Google Scholar
Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, et al. Loss of protein phosphatase 1 regulatory subunit PPP1R3A promotes atrial fibrillation. Circulation. 2019;140(8):681–93. https://doi.org/10.1161/circulationaha.119.039642.
Article CAS PubMed PubMed Central Google Scholar
Zamiri N, Massé S, Ramadeen A, Kusha M, Hu X, Azam MA, et al. Dantrolene improves survival after ventricular fibrillation by mitigating impaired calcium handling in animal models. Circulation. 2014;129(8):875–85. https://doi.org/10.1161/circulationaha.113.005443.
Article CAS PubMed Google Scholar
Kaur H, Katyal N, Yelam A, Kumar K, Srivastava H, Govindarajan R. Malignant hyperthermia. Mo Med. 2019;116(2):154–9.
PubMed PubMed Central Google Scholar
Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F. Dantrolene–a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004;59(4):364–73. https://doi.org/10.1111/j.1365-2044.2004.03658.x.
Article CAS PubMed Google Scholar
Shannon TR, Lew WY. Diastolic release of calcium from the sarcoplasmic reticulum: a potential target for treating triggered arrhythmias and heart failure. J Am Coll Cardiol. 2009;53(21):2006–8. https://doi.org/10.1016/j.jacc.2009.02.032.
Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, et al. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol. 2009;53(21):1993–2005. https://doi.org/10.1016/j.jacc.2009.01.065.
Article CAS PubMed PubMed Central Google Scholar
Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest. 2013;123(1):46–52. https://doi.org/10.1172/jci62834.
Article CAS PubMed PubMed Central Google Scholar
Kajii T, Kobayashi S, Shiba S, Fujii S, Tamitani M, Kohno M, et al. Dantrolene prevents ventricular tachycardia by stabilizing the ryanodine receptor in pressure- overload induced failing hearts. Biochem Biophys Res Commun. 2020;521(1):57–63. https://doi.org/10.1016/j.bbrc.2019.10.071.
Article CAS PubMed Google Scholar
Maxwell JT, Domeier TL, Blatter LA. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. Am J Physiol Heart Circ Physiol. 2012;302(4):H953–63. https://doi.org/10.1152/ajpheart.00936.2011.
Article CAS PubMed Google Scholar
Ohkusa T, Hisamatsu Y, Ueyama T, Kobayashi S, Yano M, Maekawa T, et al. Effects of dantrolene sodium on progression of left ventricular hypertrophy induced by pressure overload in rats. J Cardiovasc Pharmacol. 1998;31(4):520–4. https://doi.org/10.1097/00005344-199804000-00008.
Article CAS PubMed Google Scholar
Hamada T, Gangopadhyay JP, Mandl A, Erhardt P, Ikemoto N. Defective regulation of the ryanodine receptor induces hypertrophy in cardiomyocytes. Biochem Biophys Res Commun. 2009;380(3):493–7. https://doi.org/10.1016/j.bbrc.2009.01.152.
Article CAS PubMed PubMed Central Google Scholar
Wheatley AM, Butkow N, Grote J, Musiker J, Rosendorff C. The effect of propranolol, verapamil and dantrolene treatment on cardiac hypertrophy, enhanced myocardial contractility and tachycardia in the hyperthyroid rat. Pharmacol Res. 1990;22(3):307–18. https://doi.org/10.1016/1043-6618(90)90728-v.
Article CAS PubMed Google Scholar
Wu Z, Yang B, Liu C, Liang G, Eckenhoff MF, Liu W, et al. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord. 2015;29(3):184–91. https://doi.org/10.1097/wad.0000000000000075.
Article CAS PubMed PubMed Central Google Scholar
Quinn JL, Huynh T, Uaesoontrachoon K, Tatem K, Phadke A, Van der Meulen JH, et al. Effects of dantrolene therapy on disease phenotype in dystrophin deficient mdx mice. PLoS Curr. 2013;5. https://doi.org/10.1371/currents.md.e246cf493a7edb1669f42fb735936b46.
Wang DW, Mokhonova EI, Kendall GC, Becerra D, Naeini YB, Cantor RM, et al. Repurposing dantrolene for long-term combination therapy to potentiate antisense-mediated DMD exon skipping in the mdx mouse. Mol Ther Nucleic Acids. 2018;11:180–91. https://doi.org/10.1016/j.omtn.2018.02.002.
Article CAS PubMed PubMed Central Google Scholar
Dawn B, Guo Y, Rezazadeh A, Huang Y, Stein AB, Hunt G, et al. Postinfarct cytokine therapy regenerates cardiac tissue and improves left ventricular function. Circ Res. 2006;98(8):1098–105. https://doi.org/10.1161/01.Res.0000218454.76784.66.
Comments (0)