Isolated Perfused Hearts for Cardiovascular Research: An Old Dog with New Tricks

Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

Article  PubMed  PubMed Central  Google Scholar 

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392:1789–1858

Figtree GA, Broadfoot K, Casadei B, et al. A call to action for new global approaches to cardiovascular disease drug solutions. Circulation. 2021;144:159–69.

Article  CAS  PubMed  Google Scholar 

Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M. Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials. 2019;198:3–26.

Article  CAS  PubMed  Google Scholar 

Zimmer H-G. The isolated perfused heart and its pioneers. Physiology. 1998;13:203–10.

Article  Google Scholar 

Langendorff O. Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch 1895;61:291–332

Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol. 1967;212:804–14.

Article  CAS  PubMed  Google Scholar 

Williamson JR, Kobayashi K. Use of the perfused rat heart to study cardiac metabolism: retrospective and prospective views. Basic Res Cardiol. 1984;79:283–91.

Article  CAS  PubMed  Google Scholar 

Abicht J-M, Mayr TAJ, Jauch J, Guethoff S, Buchholz S, Reichart B, Bauer A. Large-animal biventricular working heart perfusion system with low priming volume-comparison between in vivo and ex vivo cardiac function. Thorac Cardiovasc Surg. 2018;66:71–82.

Article  PubMed  Google Scholar 

Iravanian S, Uzelac I, Herndon C, Langberg JJ, Fenton FH. Generation of monophasic action potentials and intermediate forms. Biophys J. 2020;119:460–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Shea C, Kabir SN, Holmes AP, Lei M, Fabritz L, Rajpoot K, Pavlovic D. Cardiac optical mapping - State-of-the-art and future challenges. Int J Biochem Cell Biol. 2020;126:105804.

Article  PubMed  PubMed Central  Google Scholar 

Baines O, Sha R, Kalla M, Holmes AP, Efimov IR, Pavlovic D, O’Shea C. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review. EP Europace 2024;26:euae017

Jalife J. Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14:776–80.

Article  PubMed  Google Scholar 

Quintanilla JG, Alfonso-Almazán JM, Pérez-Castellano N, Pandit SV, Jalife J, Pérez-Villacastín J, Filgueiras-Rama D. Instantaneous amplitude and frequency modulations detect the footprint of rotational activity and reveal stable driver regions as targets for persistent atrial fibrillation ablation. Circ Res. 2019;125:609–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Syeda F, Holmes AP, Yu TY, et al. PITX2 modulates atrial membrane potential and the antiarrhythmic effects of sodium-channel blockers. J Am Coll Cardiol. 2016;68:1881–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin AE, Bapat AC, Xiao L, et al. Clonal hematopoiesis of indeterminate potential with loss of tet2 enhances risk for atrial fibrillation through Nlrp3 inflammasome activation. Circulation. 2024. https://doi.org/10.1161/CIRCULATIONAHA.123.065597.

Article  PubMed  PubMed Central  Google Scholar 

Hennis K, Rötzer RD, Rilling J, Wu Y, Thalhammer SB, Biel M, Wahl-Schott C, Fenske S. In vivo and ex vivo electrophysiological study of the mouse heart to characterize the cardiac conduction system, including atrial and ventricular vulnerability. Nat Protoc. 2022;17:1189–222.

Article  CAS  PubMed  Google Scholar 

Stensløkken K-O, Rutkovskiy A, Kaljusto M-L, Hafstad AD, Larsen TS, Vaage J. Inadvertent phosphorylation of survival kinases in isolated perfused hearts: a word of caution. Basic Res Cardiol. 2009;104:412–23.

Article  PubMed  Google Scholar 

Hatami S, Qi X, Khan M, Forgie K, Himmat S, Tkachuk B, Wagner M, Wang X, Nagendran J, Freed DH. Oxidative stress and related metabolic alterations are induced in ex situ perfusion of donated hearts regardless of the ventricular load or leukocyte depletion. Am J Transplant. 2023;S1600–6135(22):30217–24.

Google Scholar 

Taegtmeyer H, Young ME, Lopaschuk GD, et al. Assessing cardiac metabolism: a scientific statement from the american heart association. Circ Res. 2016;118:1659–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutherland FJ, Hearse DJ. The isolated blood and perfusion fluid perfused heart. Pharmacol Res. 2000;41:613–27.

Article  CAS  PubMed  Google Scholar 

Konijnenberg LSF, Luiken TTJ, Veltien A, et al. Imatinib attenuates reperfusion injury in a rat model of acute myocardial infarction. Basic Res Cardiol. 2023;118:2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao M, Wang Z, Jiang L, et al. Oxytocin ameliorates high glucose- and ischemia/reperfusion-induced myocardial injury by suppressing pyroptosis via AMPK signaling pathway. Biomed Pharmacother. 2022;153:113498.

Article  CAS  PubMed  Google Scholar 

Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, et al. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res. 2022;118:282–94.

Article  CAS  PubMed  Google Scholar 

He H, Mulhern RM, Oldham WM, Xiao W, Lin Y-D, Liao R, Loscalzo J. L-2-hydroxyglutarate protects against cardiac injury via metabolic remodeling. Circ Res. 2022;131:562–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heusch G, Bøtker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015;65:177–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bøtker HE, Kharbanda R, Schmidt MR, et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010;375:727–34.

Article  PubMed  Google Scholar 

White SK, Frohlich GM, Sado DM, et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2015;8:178–88.

Article  PubMed  Google Scholar 

Candilio L, Malik A, Ariti C, et al. Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart. 2015;101:185–92.

Article  PubMed  Google Scholar 

Hildebrandt HA, Kreienkamp V, Gent S, Kahlert P, Heusch G, Kleinbongard P. Kinetics and signal activation properties of circulating factor(s) from healthy volunteers undergoing remote ischemic pre-conditioning. JACC Basic Transl Sci. 2016;1:3–13.

Article  PubMed  PubMed Central  Google Scholar 

Lassen TR, Just J, Hjortbak MV, et al. Cardioprotection by remote ischemic conditioning is transferable by plasma and mediated by extracellular vesicles. Basic Res Cardiol. 2021;116:16.

Article  CAS  PubMed  Google Scholar 

Valentin J-P, Hoffmann P, De Clerck F, Hammond TG, Hondeghem L. Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J Pharmacol Toxicol Methods. 2004;49:171–81.

Article  CAS  PubMed  Google Scholar 

De Marchis GM, Krisai P, Werlen L, et al. Biomarker, imaging, and clinical factors associated with overt and covert stroke in patients with atrial fibrillation. Stroke. 2023. https://doi.org/10.1161/STROKEAHA.123.043302.

Article 

Comments (0)

No login
gif