Vahdatpour C, Collins D, Goldberg S. Cardiogenic Shock. J Am Hear Assoc Cardiovasc Cerebrovasc Dis. 2019;8:e011991. https://doi.org/10.1161/JAHA.119.011991.
Thiele H, Akin I, Sandri M, et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N Engl J Med. 2017;377:2419–32. https://doi.org/10.1056/NEJMOA1710261.
Thiele H, Ohman EM, de Waha-Thiele S, et al. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J. 2019;40:2671–83. https://doi.org/10.1093/eurheartj/ehz363.
Article CAS PubMed Google Scholar
Schrage B, Ibrahim K, Loehn T, et al. Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock. Circulation. 2019;139:1249–58. https://doi.org/10.1161/CIRCULATIONAHA.118.036614.
Thiele H, Jobs A, Ouweneel DM, et al. Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J. 2017;38:3523–31. https://doi.org/10.1093/EURHEARTJ/EHX363.
Scherer C, Lüsebrink E, Kupka D, et al. Long-Term Clinical Outcome of Cardiogenic Shock Patients Undergoing Impella CP Treatment vs. Standard of Care J Clin Med. 2020;9:1–14. https://doi.org/10.3390/JCM9123803.
Pollock JD, Murray I, Bordes S, Makaryus AN. Physiology, cardiovascular hemodynamics. In: StatPearls. StatPearls Publishing; 2022.
Nakamura M, Nakagaito M, Hori M, et al. A case of Takotsubo cardiomyopathy with cardiogenic shock after influenza infection successfully recovered by IMPELLA support. J Artif Organs. 2019;22:330–3. https://doi.org/10.1007/S10047-019-01112-8.
Castillo-Sang MA, Prasad SM, Singh J, et al. Thirty-five day Impella 5.0 support via right axillary side graft cannulation for acute cardiogenic shock. Innovations (Phila). 2013;8:307–9. https://doi.org/10.1097/IMI.0000000000000009.
Mukku V, Cai Q, Gilani S, et al. Use of impella ventricular assist device in patients with severe coronary artery disease presenting with cardiac arrest. Int J Angiol. 2012;21:163–6. https://doi.org/10.1055/S-0032-1324736.
Article PubMed PubMed Central Google Scholar
Dhar G, Jolly N. Mechanical versus pharmacologic support for cardiogenic shock. Catheter Cardiovasc Interv. 2010;75:626–9. https://doi.org/10.1002/CCD.22229.
Udesen NLJ, Helgestad OKL, Banke ABS, et al. Impact of concomitant vasoactive treatment and mechanical left ventricular unloading in a porcine model of profound cardiogenic shock. Crit Care. 2020 24:. https://doi.org/10.1186/S13054-020-2816-8
Weil BR, Konecny F, Suzuki G, et al. Comparative Hemodynamic Effects of Contemporary Percutaneous Mechanical Circulatory Support Devices in a Porcine Model of Acute Myocardial Infarction. JACC Cardiovasc Interv. 2016;9:2292–303. https://doi.org/10.1016/J.JCIN.2016.08.037.
Article PubMed PubMed Central Google Scholar
Møller-Helgestad OK, Hyldebrandt JA, Banke A, et al. Impella CP or VA-ECMO in profound cardiogenic shock: left ventricular unloading and organ perfusion in a large animal model. EuroIntervention. 2019;14:E1585–92. https://doi.org/10.4244/EIJ-D-18-00684.
Jain P, Thayer KL, Abraham J, et al. Right Ventricular Dysfunction Is Common and Identifies Patients at Risk of Dying in Cardiogenic Shock. J Card Fail. 2021;27:1061–72. https://doi.org/10.1016/J.CARDFAIL.2021.07.013.
Kanwar MK, Everett KD, Gulati G, et al. Epidemiology and management of right ventricular-predominant heart failure and shock in the cardiac intensive care unit. Eur Hear J Acute Cardiovasc Care. 2022;11:584–94. https://doi.org/10.1093/EHJACC/ZUAC063.
Burstein B, van Diepen S, Wiley BM, et al. Biventricular Function and Shock Severity Predict Mortality in Cardiac ICU Patients. Chest. 2022;161:697–709. https://doi.org/10.1016/j.chest.2021.09.032.
Lala A, Guo Y, Xu J, et al. Right Ventricular Dysfunction in Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Hemodynamic Analysis of the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) Trial and Registry. J Card Fail. 2018;24:148–56. https://doi.org/10.1016/j.cardfail.2017.10.009.
Kuchibhotla S, Esposito ML, Breton C, et al. Acute Biventricular Mechanical Circulatory Support for Cardiogenic Shock. J Am Heart Assoc. 2017;6:e006670. https://doi.org/10.1161/JAHA.117.006670.
Article PubMed PubMed Central Google Scholar
Lüsebrink E, Kellnar A, Krieg K, et al. Percutaneous Transvalvular Microaxial Flow Pump Support in Cardiology. Circulation. 2022;145:1254–84. https://doi.org/10.1161/CIRCULATIONAHA.121.058229.
Farrar DJ, Compton PG, Hershon JJ, et al. Right heart interaction with the mechanically assisted left heart. World J Surg. 1985;9:89–102. https://doi.org/10.1007/BF01656260.
Article CAS PubMed Google Scholar
Lamberti KK, Keller SP, Edelman ER. Dynamic load modulation predicts right heart tolerance of left ventricular cardiovascular assist in a porcine model of cardiogenic shock. Sci Transl Med. 2024 16:. https://doi.org/10.1126/SCITRANSLMED.ADK4266
Hyldebrandt JA, Agger P, Sivén E, et al. Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in right heart failure after pulmonary regurgitation. Am J Physiol Heart Circ Physiol. 2015;309:H860–6. https://doi.org/10.1152/AJPHEART.00384.2015.
Article CAS PubMed Google Scholar
Hyldebrandt JA, Frederiksen CA, Heiberg J, et al. Inotropic therapy for right ventricular failure in newborn piglets: effect on contractility, hemodynamics, and interventricular interaction. Pediatr Crit Care Med. 2014;15:e327–33. https://doi.org/10.1097/PCC.0000000000000202.
Mcgovern JJ, Cheifetz IM, Craig DM, et al. Right ventricular injury in young swine: effects of catecholamines on right ventricular function and pulmonary vascular mechanics. Pediatr Res. 2000;48:763–9. https://doi.org/10.1203/00006450-200012000-00011.
Article CAS PubMed Google Scholar
Chioncel O, Parissis J, Mebazaa A, et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22:1315–41. https://doi.org/10.1002/EJHF.1922.
Lang CN, Kaier K, Zotzmann V, et al. (2020) Cardiogenic shock: incidence, survival and mechanical circulatory support usage 2007–2017-insights from a national registry. Clin Res Cardiol. 2020;1109(110):1421–30. https://doi.org/10.1007/S00392-020-01781-Z.
Josiassen J, Helgestad OKL, Udesen NLJ, et al. Unloading using Impella CP during profound cardiogenic shock caused by left ventricular failure in a large animal model: impact on the right ventricle. Intensive care Med Exp. 2020;8:41. https://doi.org/10.1186/S40635-020-00326-Y.
Article PubMed PubMed Central Google Scholar
Mehta SR, Eikelboom JW, Natarajan MK, et al. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol. 2001;37:37–43. https://doi.org/10.1016/S0735-1097(00)01089-5.
Article CAS PubMed Google Scholar
Kavarana MN, Pessin-Minsley MS, Urtecho J, et al. Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg. 2002;73:745–50. https://doi.org/10.1016/S0003-4975(01)03406-3.
Dang NC, Topkara VK, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Hear Lung Transplant. 2006;25:1–6. https://doi.org/10.1016/j.healun.2005.07.008.
Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The Right Ventricular Failure Risk Score. A Pre-Operative Tool for Assessing the Risk of Right Ventricular Failure in Left Ventricular Assist Device Candidates. J Am Coll Cardiol. 2008;51:2163–72. https://doi.org/10.1016/j.jacc.2008.03.009.
Article PubMed PubMed Central Google Scholar
Houston BA, Kalathiya RJ, Hsu S, et al. Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: A multi-center hemodynamic analysis. J Hear Lung Transplant. 2016;35:868–76. https://doi.org/10.1016/j.healun.2016.01.1225.
Comments (0)