Braye A, Tournaye H, Goossens E. Setting up a cryopreservation programme for immature testicular tissue: lessons learned after more than 15 years of experience. Clin Med Insights Reprod. 2019;13. https://doi.org/10.1177/117955811988634.
Sadri-Ardekani H, Atala A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell Res Ther. 2014;5:1–10. https://doi.org/10.1186/scrt457.
Vermeulen M, Del Vento F, De Michele F, Poels J, Wyns C. Development of a cytocompatible scaffold from pig immature testicular tissue allowing human sertoli cell attachment, proliferation and functionality. Int J Mol Sci. 2018;19:227. https://doi.org/10.3390/ijms19010227.
Article CAS PubMed PubMed Central Google Scholar
Baert Y, Braye A, Struijk RB, van Pelt AM, Goossens E. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil Steril. 2015;104:1244–52. https://doi.org/10.1016/j.fertnstert.2015.07.1134.
Article CAS PubMed Google Scholar
Bakhach J. The cryopreservation of composite tissues: principles and recent advancement on cryopreservation of different type of tissues. Organogenesis. 2009;5:119–26. https://doi.org/10.4161/org.5.3.9583.
Article PubMed PubMed Central Google Scholar
Sanjo H, Komeya M, Sato T, Abe T, Katagiri K, Yamanaka H, Ino Y, Arakawa N, Hirano H, Yao T, Asayama Y. In vitro mouse spermatogenesis with an organ culture method in chemically defined medium. PLoS ONE. 2018;13:e0192884. https://doi.org/10.1371/journal.pone.0192884.
Article CAS PubMed PubMed Central Google Scholar
Koruji M, Shahverdi A, Janan A, Piryaei A, Lakpour MR, Gilani Sedighi MA. Proliferation of small number of human spermatogonial stem cells obtained from azoospermic patients. J Assist Reprod Genet. 2012;29:957–67. https://doi.org/10.1007/s10815-012-9817-8.
Article PubMed PubMed Central Google Scholar
Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018;29:207–14. https://doi.org/10.1016/j.scr.2018.04.009.
Article CAS PubMed PubMed Central Google Scholar
Eyni H, Ghorbani S, Nazari H, Hajialyani M, Razavi Bazaz S, Mohaqiq M, Ebrahimi Warkiani M, Sutherland DS. Advanced bioengineering of male germ stem cells to preserve fertility. J Tissue Eng. 2021;12:1–25. https://doi.org/10.1177/20417314211060590.
Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update. 2016;22:744–61. https://doi.org/10.1093/humupd/dmw029.
Article CAS PubMed PubMed Central Google Scholar
Abu Elhija M, Lunenfeld E, Schlatt S, Huleihel M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl. 2012;14:285. https://doi.org/10.1038/aja.2011.112.
Article CAS PubMed Google Scholar
Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, Huleihel M, Wistuba J. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod. 2009;15:521–9. https://doi.org/10.1093/molehr/gap052.
Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl. 2015;17:972. https://doi.org/10.4103/1008-682X.154994.
Article CAS PubMed PubMed Central Google Scholar
Gholami K, Pourmand G, Koruji M, Sadighigilani M, Navid S, Izadyar F, Abbasi M. Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reprod Biol. 2018;18:397–403. https://doi.org/10.1016/j.repbio.2018.09.006.
Sun M, Yuan Q, Niu M, Wang H, Wen L, Yao C, Hou J, Chen Z, Fu H, Zhou F, Li C. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. 2018;25:749–66. https://doi.org/10.1038/s41418-017-0015-1.
Movassagh SA, Dehkordi MB, Koruji M, Pourmand G, Farzaneh P, Movassagh SA, Jabari A, Samadian A, Khadivi F, Abbasi M. In vitro spermatogenesis by three-dimensional culture of spermatogonial stem cells on decellularized testicular matrix. Galen Med. 2019;8:e1565. https://doi.org/10.31661/gmj.v8i0.1565.
Yang Y, Lin Q, Zhou C, Li Q, Li Z, Cao Z, Liang J, Li H, Mei J, Zhang Q, Xiang Q. A testis-derived hydrogel as an efficient feeder-free culture platform to promote mouse spermatogonial stem cell proliferation and differentiation. Front Cell Dev Biol. 2020;8:250. https://doi.org/10.3389/fcell.2020.00250.
Article PubMed PubMed Central Google Scholar
Naeemi S, Eidi A, Khanbabaee R, Sadri-Ardekani H, Kajbafzadeh AM. Differentiation and proliferation of spermatogonial stem cells using a three-dimensional decellularized testicular scaffold: a new method to study the testicular microenvironment in vitro. Int Urol Nephrol. 2021;53:1543–50. https://doi.org/10.1007/s11255-021-02877-9.
Article CAS PubMed Google Scholar
Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci. 2016;20:193–201. https://doi.org/10.1016/j.cossms.2016.02.001.
Article CAS PubMed PubMed Central Google Scholar
Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, Cho DW. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18:1229–37. https://doi.org/10.1021/acs.biomac.6b01908.
Article CAS PubMed Google Scholar
Topraggaleh TR, Valojerdi MR, Montazeri L, Baharvand H. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci. 2019;7:1422–36. https://doi.org/10.1039/C8BM01001C.
Richer G, Baert Y, Goossens E. In-vitro spermatogenesis through testis modelling: toward the generation of testicular organoids. Andrology. 2020;8:879–91. https://doi.org/10.1111/andr.12741.
Article PubMed PubMed Central Google Scholar
Vermeulen M, Del Vento F, Kanbar M, Pyr dit Ruys S, Vertommen D, Poels J, Wyns C. Generation of organized porcine testicular organoids in solubilized hydrogels from decellularized extracellular matrix. Int J Mol Sci. 2019;20:5476. https://doi.org/10.3390/ijms20215476.
Article CAS PubMed PubMed Central Google Scholar
Sullivan R. Epididymosomes: role of extracellular microvesicles in sperm maturation. Front Biosci (Schol Ed). 2016;8:106–14. https://doi.org/10.2741/s450.
Sullivan R, Saez F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction. 2013;146:R21. https://doi.org/10.1530/REP-13-0058.
Article CAS PubMed Google Scholar
Paul N, Talluri TR, Nag P, Kumaresan A, Epididymosomes. A potential male fertility influencer. Andrologia. 2021;53:e14155. https://doi.org/10.1111/and.14155.
Zhou W, Stanger SJ, Anderson AL, Bernstein IR, De Iuliis GN, McCluskey A, McLaughlin EA, Dun MD, Nixon B. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol. 2019;17:1–18. https://doi.org/10.1186/s12915-019-0653-5.
Nixon B, De Iuliis GN, Hart HM, Zhou W, Mathe A, Bernstein IR, Anderson AL, Stanger SJ, Skerrett-Byrne DA, Jamaluddin MF, Almazi JG. Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation. Mol Cell Proteom. 2019;18:S91–108. https://doi.org/10.1074/mcp.RA118.000946.
Suryawanshi AR, Khan SA, Joshi CS, Khole VV. Epididymosome-mediated acquisition of MMSDH, an androgen‐dependent and developmentally regulated epididymal sperm protein. J Androl. 2012;33:963–74. https://doi.org/10.2164/jandrol.111.014753.
Comments (0)