The effect of epididymosomes on the development of frozen-thawed mouse spermatogonial stem cells after culture in a decellularized testicular scaffold and transplantation into azoospermic mice

Braye A, Tournaye H, Goossens E. Setting up a cryopreservation programme for immature testicular tissue: lessons learned after more than 15 years of experience. Clin Med Insights Reprod. 2019;13. https://doi.org/10.1177/117955811988634.

Sadri-Ardekani H, Atala A. Testicular tissue cryopreservation and spermatogonial stem cell transplantation to restore fertility: from bench to bedside. Stem Cell Res Ther. 2014;5:1–10. https://doi.org/10.1186/scrt457.

Article  Google Scholar 

Vermeulen M, Del Vento F, De Michele F, Poels J, Wyns C. Development of a cytocompatible scaffold from pig immature testicular tissue allowing human sertoli cell attachment, proliferation and functionality. Int J Mol Sci. 2018;19:227. https://doi.org/10.3390/ijms19010227.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baert Y, Braye A, Struijk RB, van Pelt AM, Goossens E. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil Steril. 2015;104:1244–52. https://doi.org/10.1016/j.fertnstert.2015.07.1134.

Article  CAS  PubMed  Google Scholar 

Bakhach J. The cryopreservation of composite tissues: principles and recent advancement on cryopreservation of different type of tissues. Organogenesis. 2009;5:119–26. https://doi.org/10.4161/org.5.3.9583.

Article  PubMed  PubMed Central  Google Scholar 

Sanjo H, Komeya M, Sato T, Abe T, Katagiri K, Yamanaka H, Ino Y, Arakawa N, Hirano H, Yao T, Asayama Y. In vitro mouse spermatogenesis with an organ culture method in chemically defined medium. PLoS ONE. 2018;13:e0192884. https://doi.org/10.1371/journal.pone.0192884.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koruji M, Shahverdi A, Janan A, Piryaei A, Lakpour MR, Gilani Sedighi MA. Proliferation of small number of human spermatogonial stem cells obtained from azoospermic patients. J Assist Reprod Genet. 2012;29:957–67. https://doi.org/10.1007/s10815-012-9817-8.

Article  PubMed  PubMed Central  Google Scholar 

Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018;29:207–14. https://doi.org/10.1016/j.scr.2018.04.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eyni H, Ghorbani S, Nazari H, Hajialyani M, Razavi Bazaz S, Mohaqiq M, Ebrahimi Warkiani M, Sutherland DS. Advanced bioengineering of male germ stem cells to preserve fertility. J Tissue Eng. 2021;12:1–25. https://doi.org/10.1177/20417314211060590.

Article  CAS  Google Scholar 

Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update. 2016;22:744–61. https://doi.org/10.1093/humupd/dmw029.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abu Elhija M, Lunenfeld E, Schlatt S, Huleihel M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl. 2012;14:285. https://doi.org/10.1038/aja.2011.112.

Article  CAS  PubMed  Google Scholar 

Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, Huleihel M, Wistuba J. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod. 2009;15:521–9. https://doi.org/10.1093/molehr/gap052.

Article  PubMed  Google Scholar 

Huleihel M, Nourashrafeddin S, Plant TM. Application of three-dimensional culture systems to study mammalian spermatogenesis, with an emphasis on the rhesus monkey (Macaca mulatta). Asian J Androl. 2015;17:972. https://doi.org/10.4103/1008-682X.154994.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gholami K, Pourmand G, Koruji M, Sadighigilani M, Navid S, Izadyar F, Abbasi M. Efficiency of colony formation and differentiation of human spermatogenic cells in two different culture systems. Reprod Biol. 2018;18:397–403. https://doi.org/10.1016/j.repbio.2018.09.006.

Article  PubMed  Google Scholar 

Sun M, Yuan Q, Niu M, Wang H, Wen L, Yao C, Hou J, Chen Z, Fu H, Zhou F, Li C. Efficient generation of functional haploid spermatids from human germline stem cells by three-dimensional-induced system. Cell Death Differ. 2018;25:749–66. https://doi.org/10.1038/s41418-017-0015-1.

Article  PubMed  Google Scholar 

Movassagh SA, Dehkordi MB, Koruji M, Pourmand G, Farzaneh P, Movassagh SA, Jabari A, Samadian A, Khadivi F, Abbasi M. In vitro spermatogenesis by three-dimensional culture of spermatogonial stem cells on decellularized testicular matrix. Galen Med. 2019;8:e1565. https://doi.org/10.31661/gmj.v8i0.1565.

Article  Google Scholar 

Yang Y, Lin Q, Zhou C, Li Q, Li Z, Cao Z, Liang J, Li H, Mei J, Zhang Q, Xiang Q. A testis-derived hydrogel as an efficient feeder-free culture platform to promote mouse spermatogonial stem cell proliferation and differentiation. Front Cell Dev Biol. 2020;8:250. https://doi.org/10.3389/fcell.2020.00250.

Article  PubMed  PubMed Central  Google Scholar 

Naeemi S, Eidi A, Khanbabaee R, Sadri-Ardekani H, Kajbafzadeh AM. Differentiation and proliferation of spermatogonial stem cells using a three-dimensional decellularized testicular scaffold: a new method to study the testicular microenvironment in vitro. Int Urol Nephrol. 2021;53:1543–50. https://doi.org/10.1007/s11255-021-02877-9.

Article  CAS  PubMed  Google Scholar 

Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci. 2016;20:193–201. https://doi.org/10.1016/j.cossms.2016.02.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H, Han W, Kim H, Ha DH, Jang J, Kim BS, Cho DW. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017;18:1229–37. https://doi.org/10.1021/acs.biomac.6b01908.

Article  CAS  PubMed  Google Scholar 

Topraggaleh TR, Valojerdi MR, Montazeri L, Baharvand H. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci. 2019;7:1422–36. https://doi.org/10.1039/C8BM01001C.

Article  Google Scholar 

Richer G, Baert Y, Goossens E. In-vitro spermatogenesis through testis modelling: toward the generation of testicular organoids. Andrology. 2020;8:879–91. https://doi.org/10.1111/andr.12741.

Article  PubMed  PubMed Central  Google Scholar 

Vermeulen M, Del Vento F, Kanbar M, Pyr dit Ruys S, Vertommen D, Poels J, Wyns C. Generation of organized porcine testicular organoids in solubilized hydrogels from decellularized extracellular matrix. Int J Mol Sci. 2019;20:5476. https://doi.org/10.3390/ijms20215476.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sullivan R. Epididymosomes: role of extracellular microvesicles in sperm maturation. Front Biosci (Schol Ed). 2016;8:106–14. https://doi.org/10.2741/s450.

Article  PubMed  Google Scholar 

Sullivan R, Saez F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction. 2013;146:R21. https://doi.org/10.1530/REP-13-0058.

Article  CAS  PubMed  Google Scholar 

Paul N, Talluri TR, Nag P, Kumaresan A, Epididymosomes. A potential male fertility influencer. Andrologia. 2021;53:e14155. https://doi.org/10.1111/and.14155.

Article  PubMed  Google Scholar 

Zhou W, Stanger SJ, Anderson AL, Bernstein IR, De Iuliis GN, McCluskey A, McLaughlin EA, Dun MD, Nixon B. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol. 2019;17:1–18. https://doi.org/10.1186/s12915-019-0653-5.

Article  Google Scholar 

Nixon B, De Iuliis GN, Hart HM, Zhou W, Mathe A, Bernstein IR, Anderson AL, Stanger SJ, Skerrett-Byrne DA, Jamaluddin MF, Almazi JG. Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation. Mol Cell Proteom. 2019;18:S91–108. https://doi.org/10.1074/mcp.RA118.000946.

Article  CAS  Google Scholar 

Suryawanshi AR, Khan SA, Joshi CS, Khole VV. Epididymosome-mediated acquisition of MMSDH, an androgen‐dependent and developmentally regulated epididymal sperm protein. J Androl. 2012;33:963–74. https://doi.org/10.2164/jandrol.111.014753.

Comments (0)

No login
gif