Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs—part a: renal, penile, and testicular tumours. European Urol. 2016;70:93–105. https://doi.org/10.1016/j.eururo.2016.02.029.
Dabestani S, Thorstenson A, Lindblad P, Harmenberg U, Ljungberg B, Lundstam S. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study. World J Urol. 2016;34:1081–6. https://doi.org/10.1007/s00345-016-1773-y.
Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:706–20. https://doi.org/10.1093/annonc/mdz056.
Article CAS PubMed Google Scholar
Roussel E, Capitanio U, Kutikov A, Oosterwijk E, Pedrosa I, Rowe SP, et al. Novel imaging methods for renal mass characterization: a collaborative review. European Urol. 2022;81:476–88. https://doi.org/10.1016/j.eururo.2022.01.040.
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92:897–965. https://doi.org/10.1152/physrev.00049.2010.
Article CAS PubMed Google Scholar
Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120:3787–851. https://doi.org/10.1021/acs.chemrev.9b00738.
Article CAS PubMed PubMed Central Google Scholar
Verhoeff SR, Oosting SF, Elias SG, van Es SC, Gerritse SL, Angus L, et al. [89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to predict watchful waiting duration in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2023;29:592–601. https://doi.org/10.1158/1078-0432.Ccr-22-0921.
Article CAS PubMed Google Scholar
Hekman MCH, Rijpkema M, Aarntzen EH, Mulder SF, Langenhuijsen JF, Oosterwijk E, et al. Positron emission tomography/computed tomography with (89)Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur Urol. 2018;74:257–60. https://doi.org/10.1016/j.eururo.2018.04.026.
Wei W, Younis MH, Lan X, Liu J, Cai W. Single-domain antibody theranostics on the horizon. J Nucl Med. 2022;63:1475–9. https://doi.org/10.2967/jnumed.122.263907.
Article CAS PubMed PubMed Central Google Scholar
Krasniqi A, D’Huyvetter M, Devoogdt N, Frejd FY, Sorensen J, Orlova A, et al. Same-day imaging using small proteins: clinical experience and translational prospects in oncology. J Nucl Med. 2018;59:885–91. https://doi.org/10.2967/jnumed.117.199901.
Article CAS PubMed Google Scholar
Morris O, Fairclough M, Grigg J, Prenant C, McMahon A. A review of approaches to 18F radiolabelling affinity peptides and proteins. J Label Compd Radiopharm. 2018;62:4–23. https://doi.org/10.1002/jlcr.3634.
Cleeren F, Lecina J, Bridoux J, Devoogdt N, Tshibangu T, Xavier C, et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat Protoc. 2018;13:2330–47. https://doi.org/10.1038/s41596-018-0040-7.
Article CAS PubMed Google Scholar
Qin X, Guo X, Liu T, Li L, Zhou N, Ma X, et al. High in-vivo stability in preclinical and first-in-human experiments with [18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. European J Nucl Med Mol Imaging. 2022;50:302–13. https://doi.org/10.1007/s00259-022-05967-7.
Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, et al. The CD70-CD27 axis in oncology: the new kids on the block. J Exp Clin Cancer Res. 2022;41:12. https://doi.org/10.1186/s13046-021-02215-y.
Article CAS PubMed PubMed Central Google Scholar
Benhamouda N, Sam I, Epaillard N, Gey A, Phan L, Pham HP, et al. Plasma CD27, a surrogate of the intratumoral CD27-CD70 interaction, correlates with immunotherapy resistance in renal cell carcinoma. Clin Cancer Res. 2022;28:4983–94. https://doi.org/10.1158/1078-0432.Ccr-22-0905.
Article CAS PubMed Google Scholar
Jacobs J, Deschoolmeester V, Zwaenepoel K, Rolfo C, Silence K, Rottey S, et al. CD70: An emerging target in cancer immunotherapy. Pharmacol Ther. 2015;155:1–10. https://doi.org/10.1016/j.pharmthera.2015.07.007.
Article CAS PubMed Google Scholar
Huang RR, Chen Z, Kroeger N, Pantuck A, Said J, Kluger HM, et al. CD70 is consistently expressed in primary and metastatic clear cell renal cell carcinoma. Clin Genitourin Cancer. 2023. https://doi.org/10.1016/j.clgc.2023.12.003.
Ruf M, Mittmann C, Nowicka AM, Hartmann A, Hermanns T, Poyet C, et al. pVHL/HIF-regulated CD70 expression is associated with infiltration of CD27+ lymphocytes and increased serum levels of soluble CD27 in clear cell renal cell carcinoma. Clin Cancer Res. 2015;21:889–98. https://doi.org/10.1158/1078-0432.CCR-14-1425.
Article CAS PubMed Google Scholar
Jilaveanu LB, Sznol J, Aziz SA, Duchen D, Kluger HM, Camp RL. CD70 expression patterns in renal cell carcinoma. Human Pathol. 2012;43:1394–9. https://doi.org/10.1016/j.humpath.2011.10.014.
Li S, Chen D, Guo H, Liu D, Yang C, Zhang R, et al. The novel high-affinity humanized antibody IMM40H targets CD70, eliminates tumors via Fc-mediated effector functions, and interrupts CD70/CD27 signaling. Front Oncol. 2023;13:1240061. https://doi.org/10.3389/fonc.2023.1240061.
Article CAS PubMed PubMed Central Google Scholar
Panowski SH, Srinivasan S, Tan N, Tacheva-Grigorova SK, Smith B, Mak YSL, et al. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma. Cancer Res. 2022;82:2610–24. https://doi.org/10.1158/0008-5472.CAN-21-2931.
Article CAS PubMed Google Scholar
Dewulf J, Flieswasser T, Delahaye T, Vangestel C, Miranda A, de Haard H, et al. Site-specific (68)Ga-labeled nanobody for PET imaging of CD70 expression in preclinical tumor models. EJNMMI Radiopharm Chem. 2023;8:8. https://doi.org/10.1186/s41181-023-00194-3.
Article PubMed PubMed Central Google Scholar
Ziaei V, Ghassempour A, Davami F, Azarian B, Behdani M, Dabiri H, et al. Production and characterization of a camelid single domain anti-CD22 antibody conjugated to DM1. Mol Cell Biochem. 2023. https://doi.org/10.1007/s11010-023-04741-z.
Zhang X, Liu C, Xie Y, Hu Q, Chen Y, Li J. Identification and characterization of blocking nanobodies against human CD70. Acta Biochim Biophys Sin (Shanghai). 2022;54:1518–27. https://doi.org/10.3724/abbs.2022141.
Article CAS PubMed PubMed Central Google Scholar
Cleeren F, Lecina J, Bridoux J, Devoogdt N, Tshibangu T, Xavier C, et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al(18)F-RESCA method. Nat Protoc. 2018;13:2330–47. https://doi.org/10.1038/s41596-018-0040-7.
Article CAS PubMed Google Scholar
Dandekar M, Tseng JR, Gambhir SS. Reproducibility of <sup>18</sup>F-FDG microPET studies in mouse tumor xenografts. J Nucl Med. 2007;48:602–7. https://doi.org/10.2967/jnumed.106.036608.
Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA: A Cancer J Clin. 2017;67:507–24. https://doi.org/10.3322/caac.21411.
Wu Q, Huang G, Wei W, Liu J. Molecular imaging of renal cell carcinoma in precision medicine. Mol Pharm. 2022;19:3457–70. https://doi.org/10.1021/acs.molpharmaceut.2c00034.
Comments (0)