18β-glycyrrhetinic acid suppresses Lewis lung cancer growth through protecting immune cells from ferroptosis

Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654

Article  PubMed  Google Scholar 

Schabath MB, Cote ML (2019) Cancer progress and priorities: lung cancer. Cancer Epidemiol Biomarkers Prev 28:1563–1579. https://doi.org/10.1158/1055-9965.EPI-19-0221

Article  PubMed  PubMed Central  Google Scholar 

Chen P, Wu Q, Feng J, Yan L, Sun Y, Liu S, Xiang Y et al (2020) Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther 5:51. https://doi.org/10.1038/s41392-020-0149-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kennedy LB, Salama AKS (2020) A review of cancer immunotherapy toxicity. CA Cancer J Clin 70:86–104. https://doi.org/10.3322/caac.21596

Article  PubMed  Google Scholar 

Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X et al (2021) Nad(+) metabolism maintains inducible Pd-L1 expression to drive tumor immune evasion. Cell Metab 33:110–127 e115. https://doi.org/10.1016/j.cmet.2020.10.021

Article  CAS  Google Scholar 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, Fu S et al (2022) Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612:338–346. https://doi.org/10.1038/s41586-022-05443-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q et al (2021) Cd36-mediated ferroptosis dampens intratumoral Cd 8(+) T cell effector function and impairs their antitumor ability. Cell Metab 33:1001–1012 e1005. https://doi.org/10.1016/j.cmet.2021.02.015

Li X, Sun R, Liu R (2019) Natural products in licorice for the therapy of liver diseases: progress and future opportunities. Pharmacol Res 144:210–226. https://doi.org/10.1016/j.phrs.2019.04.025

Article  CAS  PubMed  Google Scholar 

Hasan MK, Ara I, Mondal MSA, Kabir Y (2021) Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 7:e07240. https://doi.org/10.1016/j.heliyon.2021.e07240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuang P, Zhao W, Su W, Zhang Z, Zhang L, Liu J, Ren G et al (2013) 18beta-glycyrrhetinic acid inhibits hepatocellular carcinoma development by reversing hepatic stellate cell-mediated immunosuppression in mice. Int J Cancer 132:1831–1841. https://doi.org/10.1002/ijc.27852

Article  CAS  PubMed  Google Scholar 

Li J, Tang F, Li R, Chen Z, Lee SM, Fu C, Zhang J et al (2020) Dietary compound glycyrrhetinic acid suppresses tumor angiogenesis and growth by modulating antiangiogenic and proapoptotic pathways in vitro and in vivo. J Nutr Biochem 77:108268. https://doi.org/10.1016/j.jnutbio.2019.108268

Article  CAS  PubMed  Google Scholar 

Hussain H, Green IR, Shamraiz U, Saleem M, Badshah A, Abbas G, Rehman NU et al (2018) Therapeutic potential of glycyrrhetinic acids: a patent review (2010–2017). Expert Opin Ther Pat 28:383–398. https://doi.org/10.1080/13543776.2018.1455828

Article  CAS  PubMed  Google Scholar 

Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Fan L et al (2022) 18beta-glycyrrhetinic acid protects neuronal cells from ferroptosis through inhibiting labile iron accumulation and preventing coenzyme Q10 reduction. Biochem Biophys Res Commun 635:57–64. https://doi.org/10.1016/j.bbrc.2022.10.017

Article  CAS  PubMed  Google Scholar 

Asl MN, Hosseinzadeh H (2008) Review of pharmacological effects of Glycyrrhiza Sp. and its bioactive compounds. Pharmacol Res 22:709–724. https://doi.org/10.1002/ptr.2362

Article  CAS  Google Scholar 

Krahenbuhl S, Hasler F, Frey BM, Frey FJ, Brenneisen R, Krapf R (1994) Kinetics and dynamics of orally administered 18 beta-glycyrrhetinic acid in humans. J Clin Endocrinol Metab. 78:581–585. https://doi.org/10.1210/jcem.78.3.8126129

Article  CAS  PubMed  Google Scholar 

Farese S, Kruse A, Pasch A, Dick B, Frey BM, Uehlinger DE, Frey FJ (2009) Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int 76(8):877–884. https://doi.org/10.1038/ki.2009.269

Article  CAS  PubMed  Google Scholar 

Serra A, Uehlinger DE, Ferrari P, Dick B, Frey BM, Frey FJ, Vogt B (2002) Glycyrrhetinic acid decreases plasma potassium concentrations in patients with anuria. J Am Soc Nephrol 13(1):191–196. https://doi.org/10.1681/ASN.V131191

Article  CAS  PubMed  Google Scholar 

U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2005) Guidance for industry: estimating the maximum safe starting dose in adult healthy volunteers

Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H (2021) 18beta-Glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice. Phytother Res 35:6932–6943. https://doi.org/10.1002/ptr.7310

Article  CAS  PubMed  Google Scholar 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285. https://doi.org/10.1016/j.cell.2017.09.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravindran Menon D, Li Y, Yamauchi T, Osborne DG, Vaddi PK, Wempe MF, Zhai Z et al (2021) Egcg inhibits tumor growth in melanoma by targeting Jak-Stat signaling and its downstream Pd-L1/Pd-L2-Pd1 axis in tumors and enhancing cytotoxic T-cell responses. Pharmaceuticals (Basel) 14(11):1081. https://doi.org/10.3390/ph14111081

Article  CAS  PubMed  Google Scholar 

Liu L, Lim MA, Jung SN, Oh C, Won HR, Jin YL et al (2021) The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. Phytomedicine 92:153758. https://doi.org/10.1016/j.phymed

Article  CAS  PubMed  Google Scholar 

Shen C, Zhang Z, Tian Y, Li F, Zhou L, Jiang W, Yang L et al (2021) Sulforaphane enhances the antitumor response of chimeric antigen receptor T cells by regulating Pd-1/Pd-L1 pathway. BMC Med 19:283. https://doi.org/10.1186/s12916-021-02161-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen X, Zhao B (2018) Efficacy of Pd-1 or Pd-L1 inhibitors and Pd-L1 expression status in cancer: meta-analysis. BMJ 362:k3529. https://doi.org/10.1136/bmj.k3529

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Liang L, Dai W, Cai G, Xu Y, Li X, Li Q et al (2016) Prognostic impact of programed cell death-1 (Pd-1) and Pd-ligand 1 (Pd-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer 15:55. https://doi.org/10.1186/s12943-016-0539-x

Article  PubMed  PubMed Central  Google Scholar 

Budimir N, Thomas GD, Dolina JS, Salek-Ardakani S (2022) Reversing T-cell exhaustion in cancer: lessons learned from Pd-1/Pd-L1 immune checkpoint blockade. Cancer Immunol Res 10:146–153. https://doi.org/10.1158/2326-6066.CIR-21-0515

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif