Hartmann WM (2021) Localization and lateralization of sound. In: Litovsky RY et al (eds) Binaural hearing. Springer Handbook of Auditory Research 73. Springer International Publishing, Cham, Switzerland, pp 9–45
Litovsky RY et al (eds) (2021) Binaural hearing. Springer Handbook of Auditory Research 73. Springer International Publishing, Cham, Switzerland
Blanks DA et al (2007) Neural and behavioral sensitivity to interaural time differences using amplitude modulated tones with mismatched carrier frequencies. J Assoc Res Otolaryngol 8(3):393–408. https://doi.org/10.1007/s10162-007-0088-5
Article PubMed PubMed Central Google Scholar
Yin TCT, Smith PH, Joris PX (2019) Neural mechanisms of binaural processing in the auditory brainstem. Compr Physiol 9(4):1503–1575. https://doi.org/10.1002/cphy.c180036
Müller M (1990) Quantitative comparison of frequency representation in the auditory brainstem nuclei of the gerbil. Pachyuromys duprasi Exp Brain Res 81(1):140–149. https://doi.org/10.1007/BF00230110
Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 111(5 Pt 1):2219–2236. https://doi.org/10.1121/1.1471898
Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91(3):1648–1661. https://doi.org/10.1121/1.402445
Article CAS PubMed Google Scholar
Verschooten E et al (2019) The upper frequency limit for the use of phase locking to code temporal fine structure in humans: a compilation of viewpoints. Hear Res 377:109–121. https://doi.org/10.1016/j.heares.2019.03.011
Article PubMed PubMed Central Google Scholar
Zwislocki J, Feldman RS (1956) Just noticeable differences in dichotic phase. J Acoust Soc Am 28(5):860–864. https://doi.org/10.1121/1.1908495
Klumpp RG, Eady HR (1956) Some measurements of interaural time difference thresholds. J Acoust Soc Am 28(5):859–860. https://doi.org/10.1121/1.1908493
Klug J, Dietz M (2022) Frequency dependence of sensitivity to interaural phase differences in pure tones. J Acoust Soc Am 152:3130–3141. https://doi.org/10.1121/10.0015246
Thavam S, Dietz M (2019) Smallest perceivable interaural time differences. J Acoust Soc Am 145(1):458–468. https://doi.org/10.1121/1.5087566
Stern RM, Zeiberg AS, Trahiotis C (1988) Lateralization of complex binaural stimuli: a weighted-image model. J Acoust Soc Am 84(1):156–165. https://doi.org/10.1121/1.396982
Article CAS PubMed Google Scholar
Shackleton TM, Meddis R, Hewitt MJ (1992) Across frequency integration in a model of lateralization. J Acoust Soc Am 91(4):2276–2279. https://doi.org/10.1121/1.403663
Folkerts ML, Stecker GC (2022) Spectral weighting functions for lateralization and localization of complex sound. J Acoust Soc Am 151(5):3409–3425. https://doi.org/10.1121/10.0011469
Article PubMed PubMed Central Google Scholar
Tollin DJ, Henning GB (1999) Some aspects of the lateralization of echoed sound in man. II. The role of the stimulus spectrum. J Acoust Soc Am 105(2):838–49. https://doi.org/10.1121/1.426273
Article CAS PubMed Google Scholar
Goupell MJ, Bilokon AV (2022) Support for the frequency dominance region explanation of lateralization of larger than physiologically possible interaural time differences. In: International Symposium on Hearing. Lyon, France. https://doi.org/10.5281/zenodo.6576929
Bilsen FA, Raatgever J (1973) Spectral dominance in lateralization. Acustica 28:131–132
Raatgever J (1980) On the binaural processing of stimuli with different interaural phase relations. The Netherlands, Technische Hogesehool Delft
Brughera A, Dunai L, Hartmann WM (2013) Human interaural time difference thresholds for sine tones: the high-frequency limit. J Acoust Soc Am 133(5):2839–2855. https://doi.org/10.1121/1.4795778
Article PubMed PubMed Central Google Scholar
Klug J, Encke J, Dietz M (2023) Characterization of the decline in auditory nerve phase locking at high frequencies. JASA Express Lett 3:074403. https://doi.org/10.1121/10.0020267
Joris PX et al (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71(3):1022–36. https://doi.org/10.1152/jn.1994.71.3.1022
Article CAS PubMed Google Scholar
Ihlefeld A, Alamatsaz N, Shapley RM (2019) Population rate-coding predicts correctly that human sound localization depends on sound intensity. Elife. https://doi.org/10.7554/eLife.47027
Article PubMed PubMed Central Google Scholar
Dietz M et al (2013) The effect of overall level on sensitivity to interaural differences of time and level at high frequencies. J Acoust Soc Am 134(1):494–502. https://doi.org/10.1121/1.4807827
Article PubMed PubMed Central Google Scholar
Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolaryngol 4(4):541–554. https://doi.org/10.1007/s10162-002-3058-y
Article PubMed PubMed Central Google Scholar
Moore BC, Glasberg BR (1983) Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74(3):750–753. https://doi.org/10.1121/1.389861
Article CAS PubMed Google Scholar
Whiteford KL, Kreft HA, Oxenham AJ (2020) The role of cochlear place coding in the perception of frequency modulation. Elife. https://doi.org/10.7554/eLife.58468
Article PubMed PubMed Central Google Scholar
Stecker GC, Bibee JM (2014) Nonuniform temporal weighting of interaural time differences in 500 Hz tones. J Acoust Soc Am 135(6):3541–3547. https://doi.org/10.1121/1.4876179
Article PubMed PubMed Central Google Scholar
Füllgrabe C, Moore BCJ (2018) The association between the processing of binaural temporal-fine-structure information and audiometric threshold and age: a meta-analysis. Trends Hear 22:2331216518797259. https://doi.org/10.1177/2331216518797259
Article PubMed PubMed Central Google Scholar
Undurraga JA et al (2016) Neural representation of interaural time differences in humans-an objective measure that matches behavioural performance. J Assoc Res Otolaryngol 17(6):591–607. https://doi.org/10.1007/s10162-016-0584-6
Article PubMed PubMed Central Google Scholar
Zhang PX, Hartmann WM (2006) Lateralization of sine tones-interaural time vs phase (L). J Acoust Soc Am 120(6):3471–3474. https://doi.org/10.1121/1.2372456
Pena JL, Konishi M (2000) Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proc Natl Acad Sci USA 97(22):11787–92. https://doi.org/10.1073/pnas.97.22.11787
Article CAS PubMed PubMed Central Google Scholar
Studebaker GA (1985) A rationalized arcsine transform. J Speech Hear Res 28(3):455–462. https://doi.org/10.1044/jshr.2803.455
Article CAS PubMed Google Scholar
Wichmann FA, Hill NJ (2001) The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept Psychophys 63(8):1314–29. https://doi.org/10.3758/bf03194545
Article CAS PubMed Google Scholar
Ross B et al (2007) Aging in binaural hearing begins in mid-life: evidence from cortical auditory-evoked responses to changes in interaural phase. J Neurosci 27(42):11172–11178. https://doi.org/10.1523/JNEUROSCI.1813-07.2007
Comments (0)