Long GR (1994) Psychophysics. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer-Verlag, New York, pp 18–56
Slabbekoorn S, Dooling RJ, Popper AN, Fay RR (eds) (2018) Effects of anthropogenic noise on animals. Springer Nature New York and ASA Press. https://doi.org/10.1007/978-1-4939-8574-6
Griffin DR (1958) Listening in the dark. Yale University Press, reprinted Cornell University Press 1986
Simmons JA (1971) Echolocation in bats: signal processing of echoes for target range. Science 171(3974):925–928. https://doi.org/10.1126/science.171.3974.925
Article CAS PubMed Google Scholar
Dalland JI (1965) Hearing sensitivity in bats. Science 150:1185–1186. https://doi.org/10.1126/science.150.3700.1185
Article CAS PubMed Google Scholar
Long GR, Schnitzler H-U (1975) Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol 100:211–219. https://doi.org/10.1007/BF00614531
Schnitzler H-U, Denzinger A (2011) Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A 197:541–559. https://doi.org/10.1007/s00359-010-0569-6
Suga N, Neuweiler G, Möller J (1975) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125. https://doi.org/10.1007/BF00606576
Bruns V (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. II. Frequency mapping in the cochlea. J Comp Physiol 106:87–97. https://doi.org/10.1007/BF00606574
Lattenkamp EZ, Nagy M, Drexl M, Vernes SC, Wiegrebe L, Knörnschild M (2021) Hearing sensitivity and amplitude coding in bats are differentially shaped by echolocation calls and social calls. Proc R Soc B 288:20202600. https://doi.org/10.1098/rspb.2020.2600
Article PubMed PubMed Central Google Scholar
Long GR (1977) Masked auditory thresholds from the bat Rhinolophus ferrumequinum. J Comp Physiol 116:247–255. https://doi.org/10.1007/BF00605406
Fay RR (1988) Comparative psychophysics. Hear Res 34(3):295–305. https://doi.org/10.1016/0378-5955(88)90009-3
Article CAS PubMed Google Scholar
Suthers RA, Summers CA (1980) Behavioral audiogram and masked thresholds of the megachiropteran echolocating bat, Rousettus. J Comp Physiol 136:227–233. https://doi.org/10.1007/BF00657537
Bohn KM, Boughman JW, Wilkinson GS, Moss CF (2004) Auditory sensitivity and frequency selectivity in greater spear-nosed bats suggest specializations for acoustic communication. J Comp Physiol A 190:185–192. https://doi.org/10.1007/s00359-003-0485-0
von Stebut B, Schmidt S (2001) Frequency discrimination threshold at search call frequencies in the echolocating bat, Eptesicus fuscus. J Comp Physiol A 187:287–291. https://doi.org/10.1007/s00359-010-0200
Long GR (1980) Further studies of masking in the greater horseshoe bat, Rhinolophus ferrumequinum. In: Busnel R-G, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 929–932
Griffin DR, McCue JJG, Grinnell AD (1963) The resistance of bats to jamming. J Exp Zool 152:229–250
Holderied MW, Korine C, Fenton M, Parsons S, Robson S, Jones G (2005) Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. J Exp Biol 208:1321–1327. https://doi.org/10.1242/jeb.01528
Jakobsen L, Brinklov S, Surlykke A (2013) Intensity and directionality of bat echolocation signals. Front Physiol 4:89. https://doi.org/10.3389/fphys.2013.00089
Article PubMed PubMed Central Google Scholar
Stilz WP, Schnitzler H-U (2012) Estimation of the acoustic range of bat echolocation for extended targets. J Acoust Soc Am 132:1765–1775
Hartley D, Suthers R (1989) The sound emission pattern of the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 85:1348–1351. https://doi.org/10.1121/1.397466
Ghose K, Moss CF (2003) The sonar beam pattern of a flying bat as it tracks tethered insects. J Acoust Soc Am 114:1120–1131. https://doi.org/10.1121/1.1589754
Ming C, Bates ME, Simmons JA (2020) How frequency hopping suppresses pulse-echo ambiguity in bat biosonar. Proc Natl Acad Sci USA 17(29):17288–17295. https://doi.org/10.1073/pnas.2001105117
Smotherman MS, Simmons AM, Simmons JA (2021) How noise affects bats and what it reveals about their biosonar systems. In: Lim B, Fenton B, Brigham M, Mistry S, Kurta A, Gillam E, Russell A, Ortega J (eds) 50 years of bat research: foundations and new frontiers. Springer-Verlag, New York, pp 61–76
Hiryu S, Bates ME, Simmons JA, Riquimaroux H (2010) FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proc Natl Acad Sci USA 107:7048–7053. https://doi.org/10.1073/pnas.1000429107
Article PubMed PubMed Central Google Scholar
Moss CF, Bohn K, Gilkenson H, Surlykke A (2006) Active listening for spatial orientation in a complex auditory scene. PLoS Biol 4:615–626. https://doi.org/10.1371/journal.pbio.0040079
Petrites AE, Eng OS, Mowlds DS, Simmons JA, DeLong CM (2009) Interpulse interval modulation by echolocating big brown bats (Eptesicus fuscus) in different densities of obstacle clutter. J Comp Physiol A 195:603–617. https://doi.org/10.1007/s00359-009-0435-6
Kothari NB, Wohlgemuth MJ, Hulgard K, Surlykke A, Moss CF (2014) Timing matters: sonar call groups facilitate target localization in bats. Front Physiol 5:168. https://doi.org/10.3389/fphys.2014.00168
Article PubMed PubMed Central Google Scholar
Wheeler AR, Fulton KA, Gaudette JE, Simmons RA, Matsuo I, Simmons JA (2016) Echolocating big brown bats, Eptesicus fuscus, modulate pulse intervals to overcome range ambiguity in cluttered surroundings. Front Behav Neurosci 10:125. https://doi.org/10.3389/fnbeh.2016.00125
Article PubMed PubMed Central Google Scholar
Tuninetti A, Ming C, Hom KN, Simmons JA, Simmons AM (2021) Spatiotemporal patterning of acoustic gaze in echolocating bats navigating gaps in clutter. iScience 24:102353. https://doi.org/10.1016/j.isci.2021.102353
Article PubMed PubMed Central Google Scholar
Hage SR, Jiang T, Berquist SW, Feng J, Metzner W (2013) Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proc Natl Acad Sci 110:4063–4068. https://doi.org/10.1073/pnas.1211533110
Article PubMed PubMed Central Google Scholar
Lu M, Zhang G, Luo J (2020) Echolocating bats exhibit differential amplitude compensation for noise interference at a sub-call level. J Exp Biol 223(19):jeb225284. https://doi.org/10.1242/jeb.225284
Tressler J, Smotherman MS (2009) Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats. J Comp Physiol A 195:923–934. https://doi.org/10.1007/s00359-009-0468-x
Simmons JA (2017) Noise interference with echo delay discrimination in bat sonar. J Acoust Soc Am 142(5):2942–2952. https://doi.org/10.1121/1.5010159
Article CAS PubMed Google Scholar
Amichai E, Blumrosen G, Yovel Y (2015) Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats. Proc Biol Sci 282:20152064. https://doi.org/10.1098/rspb.2015.2064
Article PubMed PubMed Central Google Scholar
Luo J, Goerlitz HR, Brumm H, Wiegrebe L (2015) Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Sci Rep 5:18556. https://doi.org/10.1038/srep18556
Comments (0)