Wilke-Schalhorst N, Schröder AS, Püschel K, Edler C (2019) Criminal corpse dismemberment in Hamburg, Germany from 1959 to 2016. Forensic Sci Int 300:145–150
Article CAS PubMed Google Scholar
Saville PA, Hainsworth, Rutty GN (2007) Cutting crime: the analysis of the uniqueness of saw marks on bone. Int J Legal Med 131:349–357
Rajs I, Lundström M, Broberg M, Lidberg L, Lindquist O (1998) Criminal mutilation of the human body in Sweden – A thirty-year medico-legal and forensic psychiatric study. J Forensic Sci 43(3):563–580
Article CAS PubMed Google Scholar
Konopka T, Strona M, Bolechala F, Kunz J (2007) Corpse dismemberment in the material collected by the Department of Forensic Medicine, Cracow, Poland. Leg Med (Tokyo) 9(1):1–13
Bailey JA, Wang Y (2011) Statistical analysis of kerf mark measurements in bone. Forensic Sci Med Pathol 7:53–62
Symes SA (1992) Morphology of saw marks in human bone: identification of class characteristics. Dissertation, University of Tennessee, Knoxville
Nogueira L, Quatrehomme G, Rallon C, Adalian P, Alunni V (2016) Saw marks in bones: a study of 170 experimental false start lesions. Forensic Sci Int 268:123–130
Norman DG, Watson DG, Burnett B, Fenne PM, Williams MA (2018) The cutting edge - Micro-CT for quantitative toolmark analysis of sharp force trauma to bone. Forensic Sci Int 283:156–172
Article CAS PubMed Google Scholar
Nogueira L, Alunni V, Bernardi C, Quatrehomme G (2018) Saw marks in bones: a study of secondary features of false start lesions. Forensic Sci Int 290:157–161
Martlin B, Rando C (2020) Reflectance Transformation Imaging (RTI) for the documentation of saw Mark Characteristics. J Forensic Sci 65(5):1692–1697
Berger JM, Pokines JT, Moore TL (2018) Analysis of class characteristics of reciprocating saws. J Forensic Sci 63(6):1661–1672
Capuani C, Guilbeau-Frugier C, Delisle MB, Rougé D, Telmon N (2014) Epifluorescence analysis of hacksaw marks in bone: highlighting unique individual characteristics. Forensic Sci Int 241:195–202
Alsop K, Baier W, Norman D, Burnett B, Williams MA (2021) Accurate prediction of saw blade thicknesses from false start measurements. Forensic Sci Int 318:110602
Article CAS PubMed Google Scholar
Baier W, Norman DG, Warnett JM, Payne M, Harrison NP, Hunt NCA et al (2017) Novel application of three-dimensional technologies in a case of dismember. Forensic Sci Int 270:139–145
Porta D, Amadasi A, Cappella A, Mazzarelli D, Magli F, Gibelli D, Rizzi A, Picozzi M, Gentilomo A, Cattaneo C (2016) Dismemberment and disarticulation: a forensic anthropological approach. J Forensic Legal Med 38:50–57
Öhman C, Zwierzak I, Baleani M, Viceconti M (2013) Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject. Proc Inst Mech Eng H 227(2):200–206
Bernardi C, Nogueira L, Alunni V, Quatrehomme G (2020) Analysis of false start bone lesions produced by an electrical oscillating autopsy saw. Int J Legal Med 134(2):543–551
Pelletti G, Viel G, Fais P, Viero A, Visentin S, Miotto D, Montisci M, Cecchetto G, Giraudo C (2017) Micro-computed tomography of false starts produced on bone by different hand-saws. Leg Med 26:1–5
Freas LE (2010) Assessment of wear-related features of the kerf wall from saw marks in bone. J Forensic Sci 55(6):1561–1569
Bonney H, Goodman A (2021) Validity of the use of porcine bone in forensic cut mark studies. J Forensic Sci 66(1):278–284
Weaver JK (1966) The microscopic hardness of bone. J Bone Joint Surg Am 48(2):273–288
Article CAS PubMed Google Scholar
Boivin G, Bala Y, Doublier A, Farlay D, Ste-Marie LG, Meunier PJ et al (2008) The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43:532–538
Article CAS PubMed Google Scholar
Wu WW, Zhu Y, Chen W, Li S, Yin B, Wang J et al (2019) Bone hardness of different anatomical regions of human radius and its impact on the pullout strength of screws. Orthop Surg 11(2):270–276
Article PubMed PubMed Central Google Scholar
Waltenberger L, Schutkowski H (2017) Effects of heat on cut mark characteristics. Forensic Sci Int 271:49–58
Prat N, Rongieras F, de Freminville H, Magnan P, Debord E, Fusai T, Destombe C, Sarron JC, Voiglio EJ (2012) Comparison of thoracic wall behavior in large animals and human cadavers submitted to an identical ballistic blunt thoracic trauma. Forensic Sci Int 222(1–3):179–185
Steadman DW, DiAntonio LL, Wilson JJ, Sheridan KE, Tammariello SP (2006) The effects of chemical and heat maceration techniques on the recovery of nuclear and mitochondrial DNA from bone. J Forensic Sci 51:11–17
Article CAS PubMed Google Scholar
Husch C, Berner M, Goldammer H, Lichtscheidl-Schultz I (2021) Technical note: a novel method for gentle and non-destructive removal of flesh from bones. Forensic Sci Int 9(323):110778
King C, Birch W (2015) Assessment of maceration techniques used to remove soft tissue from bone in cut mark analysis. J Forensic Sci 60:124–135
Article CAS PubMed Google Scholar
Triaca A, Mahon TJ, Myburgh J (2022) A comparison of different maceration techniques on burnt remains. J Forensic Sci 67(2):676–682
Article CAS PubMed Google Scholar
Pelletti G, Cecchetto G, Viero A, Fais P, Weber P, Miotto D, Montisci M, Viel G, Giraudo C (2017) Acuracy, precison and inter – rater reability of micro CT analysis of false start bones. A preliminary validation study. Leg Med 29:38–43
Comments (0)