Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis infection. EcoSal Plus. 2018;8(1).
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect drug Resist. 2019;12:965–75.
Article CAS PubMed PubMed Central Google Scholar
Mirzaei A, Nasr Esfahani B, Raz A, Ghanadian M, Moghim S. From the Urinary Catheter to the Prevalence of Three Classes of Integrons, β-Lactamase Genes, and Differences in Antimicrobial Susceptibility of Proteus mirabilis and Clonal Relatedness with Rep-PCR. BioMed research international. 2021;2021.
Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of Acquired Antibiotic Resistance genes in Proteus spp. Front Microbiol. 2020;11.
Benmahmod AB, Said HS, Ibrahim RH. Prevalence and mechanisms of carbapenem resistance among Acinetobacter baumannii clinical isolates in Egypt. Microb Drug Resist. 2019;25(4):480–8.
Article CAS PubMed Google Scholar
Sanches MS, Silva LC, Silva CRD, Montini VH, Oliva BHD, Guidone GHM et al. Prevalence of Antimicrobial Resistance and Clonal Relationship in ESBL/AmpC-Producing Proteus mirabilis isolated from Meat products and Community-acquired urinary tract infection (UTI-CA) in Southern Brazil. Antibiotics 2023;12(2).
Danilo de Oliveira W, Lopes Barboza MG, Faustino G, Yamanaka Inagaki WT, Sanches MS, Takayama Kobayashi RK et al. Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb Pathog. 2021;152.
Saiprasad PV, Krishnaprasad K. Exploring the hidden potential of fosfomycin for the fight against severe Gram-negative infections. Ind J Med Microbiol. 2016;34(4):416–20.
Salama LA, Saleh H, Abdel-Rhman S, Barwa R, Hassan R. Phenotypic and genotypic characterization of Extended Spectrum β-lactamases producing Proteus mirabilis isolates. J Records Pharm Biomedical Sci. 2021;5:89–99.
Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol. 2022;22(1).
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4).
Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H et al. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep. 2021;11(1).
Leboffe MJ, Pierce BE. A photographic atlas for the Microbiology Laboratory. 4th ed: Morton Publishing Company; 2011.
Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6.
Article CAS PubMed Google Scholar
CLSI. Performance standards for Antimicrobial susceptibility Testing.CLSI supplement M100. 31th ed. Wayne, United States: Clinical and Laboratory Standards Institute (CLSI); 2021.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infection: Official Publication Eur Soc Clin Microbiol Infect Dis. 2012;18(3):268–81.
Winn WC, Koneman EW. Koneman’s color atlas and textbook of diagnostic microbiology. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2006.
Pal N, Hooja S, Sharma R, Maheshwari RK. Phenotypic detection and Antibiogram of β-lactamase-producing Proteus species in a Tertiary Care Hospital, India. Annals Med Health Sci Res. 2016;6(5):267–73.
Lee K, Kim CK, Yong D, Jeong SH, Yum JH, Seo YH, et al. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods. 2010;83(2):149–52.
Article CAS PubMed Google Scholar
Amjad A, Mirza I, Abbasi S, Farwa U, Malik N, Zia F. Modified Hodge test: a simple and effective test for detection of carbapenemase production. Iran J Microbiol. 2011;3(4):189–93.
CAS PubMed PubMed Central Google Scholar
Panchal CA, Oza SS, Mehta SJ. Comparison of four phenotypic methods for detection of metallo-β-lactamase-producing Gram-negative bacteria in rural teaching hospital. J Lab Physicians. 2017;9(2):81–3.
Article CAS PubMed PubMed Central Google Scholar
Said HS, Benmahmod AB, Ibrahim RH. Co-production of AmpC and extended spectrum beta-lactamases in cephalosporin-resistant Acinetobacter baumannii in Egypt. World J Microbiol Biotechnol. 2018;34(12).
Pathirana H, De Silva BCJ, Wimalasena S, Hossain S, Heo GJ. Comparison of virulence genes in Proteus species isolated from human and pet turtle. Iran J Veterinary Res. 2018;19(1):48–52.
Gharrah MM, Mostafa El-Mahdy A, Barwa RF. Association between virulence factors and extended Spectrum Beta-Lactamase producing Klebsiella pneumoniae compared to Nonproducing isolates. Interdiscip Perspect Infect Dis. 2017;2017:7279830.
Article PubMed PubMed Central Google Scholar
Pagani L, Dell’Amico E, Migliavacca R, D’Andrea MM, Giacobone E, Amicosante G, et al. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol. 2003;41(9):4264–9.
Article CAS PubMed PubMed Central Google Scholar
Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490–5.
Article CAS PubMed Google Scholar
Barwa R, Abdelmegeed E, Abd El Galil K. Occurrence and detection of AmpC β-lactamases among some clinical isolates of Enterobacteriaceae obtained from Mansoura University Hospitals, Egypt. Afr J Microbiol Res. 2012;6(41):6924–30.
Khalil MAF, Elgaml A, El-Mowafy M. Emergence of Multidrug-Resistant New Delhi Metallo-β-Lactamase-1-Producing Klebsiella pneumoniae in Egypt. Microb drug Resist (Larchmont NY). 2017;23(4):480–7.
Barwa R, Shaaban M. Molecular characterization of Klebsiella pneumoniae clinical isolates with elevated resistance to Carbapenems. open Microbiol J. 2017;11:152–9.
Article CAS PubMed PubMed Central Google Scholar
Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–23.
Article CAS PubMed Google Scholar
Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60(2):394–7.
Article CAS PubMed Google Scholar
Cattoir V, Weill FX, Poirel L, Fabre L, Soussy CJ, Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother. 2007;59(4):751–4.
Article CAS PubMed Google Scholar
Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, et al. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother. 2009;53(5):1892–7.
Article CAS PubMed PubMed Central Google Scholar
Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother. 2008;52(10):3801–4.
Article CAS PubMed PubMed Central Google Scholar
Chen X, Zhang W, Pan W, Yin J, Pan Z, Gao S, et al. Prevalence of qnr, aac(6’)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob Agents Chemother. 2012;56(6):3423–7.
Article CAS PubMed PubMed Central Google Scholar
Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrobial agents and chemotherapy. 2006;50(11):3953-5.
Machado E, Cantón R, Baquero F, Galán JC, Rollán A, Peixe L, et al. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother. 2005;49(5):1823–9.
Article CAS PubMed PubMed Central Google Scholar
Wei Q, Jiang X, Li M, Li G, Hu Q, Lu H, et al. Diversity of gene cassette promoter variants of class 1 integrons in uropathogenic Escherichia coli. J Curr Microbiol. 2013;67:543–9.
Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 1991;19(24):6823–31.
Article CAS PubMed PubMed Central Google Scholar
Michelim L, Muller G, Zacaria J, Delamare AP, Costa SO, Echeverrigaray S. Comparison of PCR-based molecular markers for the characterization of Proteus mirabilis clinical isolates. Brazilian J Infect Diseases: Official Publication Brazilian Soc Infect Dis. 2008;12(5):423–9.
Heras J, Dominguez C, Mata E, Pascual V, Lozano C, Torres C, et al. GelJ–a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics. 2015;16:270.
Article PubMed PubMed Central Google Scholar
Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26(11):2465–6.
Article CAS PubMed PubMed Central Google Scholar
Aladarose BE, Said HS, Abdelmegeed ES. Incidence of virulence determinants among Enterococcal Clinical isolates in Egypt and its Association with Biofilm formation. Microbial drug resistance (Larchmont, NY). 2019;25(6):880–9.
El-Baz R, Said HS, Abdelmegeed ES, Barwa R. Characterization of virulence determinants and phylogenetic background of multiple and extensively drug resistant Escherichia coli isolated from different clinical sources in Egypt. Appl Microbiol Biotechnol. 2022;106(3):1279–98.
Article CAS PubMed PubMed Central Google Scholar
Said HS, Abdelmegeed ES. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect drug Resist. 2019;12:1113–25.
Article CAS PubMed PubMed Central Google Scholar
Abreu AG, Marques SG, Monteiro-Neto V, Carvalho RM, Gonçalves AG. Nosocomial infection and characterization of extended-spectrum β-lactamases-producing Enterobacteriaceae in Northeast Brazil. Rev Soc Bras Med Trop. 2011;44(4):441–6.
Comments (0)