Abbas N, Perbellini F, Thum T (2020) Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 115:52. https://doi.org/10.1007/s00395-020-0816-0
Article CAS PubMed PubMed Central Google Scholar
Akhtar M, Elliott P (2018) The genetics of hypertrophic cardiomyopathy. Glob Cardiol Sci Practice 2018:36. https://doi.org/10.21542/gcsp.2018.36
Arad M, Seidman JG, Seidman CE (2002) Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet 11:2499–2506. https://doi.org/10.1093/hmg/11.20.2499
Article CAS PubMed Google Scholar
Arimura T, Hayashi T, Terada H, Lee S-Y, Zhou Q, Takahashi M, Ueda K, Nouchi T, Hohda S, Shibutani M, Hirose M, Chen J, Park J-E, Yasunami M, Hayashi H, Kimura A (2004) A Cyper/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J Biol Chem 279:6746–6752. https://doi.org/10.1074/jbc.M311849200
Article CAS PubMed Google Scholar
Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233. https://doi.org/10.1371/journal.pgen.1001233
Article CAS PubMed PubMed Central Google Scholar
Chatterjee S, Bär C, Thum T (2017) Linc-ing the noncoding genome to heart function: beating hypertrophy. Trends Mol Med 23:577–579. https://doi.org/10.1016/j.molmed.2017.05.007
Article CAS PubMed Google Scholar
Cheng Z, Fang T, Huang J, Guo Y, Alam M, Qian H (2021) Hypertrophic cardiomyopathy: from phenotype and pathogenesis to treatment. Front Cardiovasc Med 8:722340. https://doi.org/10.3389/fcvm.2021.722340
Article PubMed PubMed Central Google Scholar
Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844. https://doi.org/10.1101/gad.875201
Article CAS PubMed PubMed Central Google Scholar
DiStefano JK (2018) The emerging role of long noncoding RNAs in human disease. Method Mol Biol (Clifton, N.J.) 1706:91–110. https://doi.org/10.1007/978-1-4939-7471-9_6
Du WW, Yang W, Chen Y, Wu Z-K, Foster FS, Yang Z, Li X, Yang BB (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412. https://doi.org/10.1093/eurheartj/ehw001
Article CAS PubMed Google Scholar
Eger N, Schoppe L, Schuster S, Laufs U, Boeckel J-N (2018) Circular RNA splicing. Adv Exp Med Biol 1087:41–52. https://doi.org/10.1007/978-981-13-1426-1_4
Article CAS PubMed Google Scholar
Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC). Eur Heart J 35:2733–2779. https://doi.org/10.1093/eurheartj/ehu284
Favaro G, Romanello V, Varanita T, Andrea Desbats M, Morbidoni V, Tezze C, Albiero M, Canato M, Gherardi G, de Stefani D, Mammucari C, Blaauw B, Boncompagni S, Protasi F, Reggiani C, Scorrano L, Salviati L, Sandri M (2019) DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 10:2576. https://doi.org/10.1038/s41467-019-10226-9
Article CAS PubMed PubMed Central Google Scholar
Garnatz AS, Gao Z, Broman M, Martens S, Earley JU, Svensson EC (2014) FOG-2 mediated recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart development. Dev Biol 395:50–61. https://doi.org/10.1016/j.ydbio.2014.08.030
Article CAS PubMed PubMed Central Google Scholar
Geng H-H, Li R, Su Y-M, Xiao J, Pan M, Cai X-X, Ji X-P (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS ONE 11:e0151753. https://doi.org/10.1371/journal.pone.0151753
Article CAS PubMed PubMed Central Google Scholar
Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE (2016) A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351:617–621. https://doi.org/10.1126/science.aad3456
Article CAS PubMed PubMed Central Google Scholar
Greene J, Baird A-M, Brady L, Lim M, Gray SG, McDermott R, Finn SP (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38. https://doi.org/10.3389/fmolb.2017.00038
Article CAS PubMed PubMed Central Google Scholar
Haase A, Göhring G, Martin U (2017) Generation of non-transgenic iPS cells from human cord blood CD34+ cells under animal component-free conditions. Stem Cell Res 21:71–73. https://doi.org/10.1016/j.scr.2017.03.022
Article CAS PubMed Google Scholar
Hafstad AD, Nabeebaccus AA, Shah AM (2013) Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 108:359. https://doi.org/10.1007/s00395-013-0359-8
Article CAS PubMed Google Scholar
Hassan GS, Chouiali F, Saito T, Hu F, Douglas SA, Ao Z, Willette RN, Ohlstein EH, Giaid A (2003) Effect of human urotensin-II infusion on hemodynamics and cardiac function. Can J Physiol Pharmacol 81:125–128. https://doi.org/10.1139/y03-004
Article CAS PubMed Google Scholar
Helms AS, Thompson AD, Day SM (2022) Translation of new and emerging therapies for genetic cardiomyopathies. JACC: Basic Transl Sci 7:70–83. https://doi.org/10.1016/j.jacbts.2021.07.012
Huang C-K, Kafert-Kasting S, Thum T (2020) Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res 126:663–678. https://doi.org/10.1161/CIRCRESAHA.119.315856
Article CAS PubMed PubMed Central Google Scholar
Hunkler HJ, Groß S, Thum T, Bär C (2022) Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with therapeutic perspective for heart regeneration. Cardiovasc Res 118:3071–3084. https://doi.org/10.1093/cvr/cvab335
Article CAS PubMed Google Scholar
Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. https://doi.org/10.1038/nbt.2890
Article CAS PubMed PubMed Central Google Scholar
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, N.Y.) 19:141–157. https://doi.org/10.1261/rna.035667.112
Article CAS PubMed PubMed Central Google Scholar
Joziasse IC, van de Smagt JJ, Smith K, Bakkers J, Sieswerda G-J, Mulder BJM, Doevendans PA (2008) Genes in congenital heart disease: atrioventricular valve formation. Basic Res Cardiol 103:216–227. https://doi.org/10.1007/s00395-008-0713-4
Article CAS PubMed Google Scholar
Kreutzer FP, Meinecke A, Mitzka S, Hunkler HJ, Hobuß L, Abbas N, Geffers R, Weusthoff J, Xiao K, Jonigk DD, Fiedler J, Thum T (2022) Development and characterization of anti-fibrotic natural compound similars with improved effectivity. Basic Res Cardiol 117:9. https://doi.org/10.1007/s00395-022-00919-6
Article CAS PubMed PubMed Central Google Scholar
Lim TB, Aliwarga E, Luu TDA, Li YP, Ng SL, Annadoray L, Sian S, Ackers-Johnson MA, Foo RS-Y (2019) Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res 115:1998–2007. https://doi.org/10.1093/cvr/cvz130
Article CAS PubMed Google Scholar
Lopez-Ayala JM, Ortiz-Genga M, Gomez-Milanes I, Lopez-Cuenca D, Ruiz-Espejo F, Sanchez-Munoz JJ, Oliva-Sandoval MJ, Monserrat L, Gimeno JR (2015) A mutation in the Z-line Cypher/ZASP protein is associated with arrhythmogenic right ventricular cardiomyopathy. Clin Genet 88:172–176. https://doi.org/10.1111/cge.12458
Article CAS PubMed Google Scholar
Lu JR, McKinsey TA, Xu H, Wang DZ, Richardson JA, Olson EN (1999) FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol 19:4495–4502. https://doi.org/10.1128/MCB.19.6.4495
Article CAS PubMed PubMed Central Google Scholar
Lu D, Chatterjee S, Xiao K, Riedel I, Huang C-K, Costa A, Cushman S, Neufeldt D, Rode L, Schmidt A, Juchem M, Leonardy J, Büchler G, Blume J, Gern O-L, Kalinke U, Wen Tan WL, Foo R, Vink A, van Laake LW, van der Meer P, Bär C, Thum T (2022) A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur Heart J 43:4496–4511. https://doi.org/10.1093/eurheartj/ehac337
Comments (0)