Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742-750. https://doi.org/10.1152/ajpheart.1994.267.2.H742
Article CAS PubMed Google Scholar
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, Brunner-La Rocca HP, Choi DJ, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Pina IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461. https://doi.org/10.1056/NEJMoa2107038
Article CAS PubMed Google Scholar
Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448. https://doi.org/10.1161/CIRCULATIONAHA.107.702795
Article CAS PubMed Google Scholar
Badolia R, Ramadurai DKA, Abel ED, Ferrin P, Taleb I, Shankar TS, Krokidi AT, Navankasattusas S, McKellar SH, Yin M, Kfoury AG, Wever-Pinzon O, Fang JC, Selzman CH, Chaudhuri D, Rutter J, Drakos SG (2020) The role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure. Circulation 142:259–274. https://doi.org/10.1161/CIRCULATIONAHA.119.044452
Article CAS PubMed PubMed Central Google Scholar
Bugger H, Byrne NJ, Abel ED (2022) Animal models of dysregulated cardiac metabolism. Circ Res 130:1965–1993. https://doi.org/10.1161/CIRCRESAHA.122.320334
Article CAS PubMed PubMed Central Google Scholar
Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171. https://doi.org/10.1016/j.cell.2013.08.032
Article CAS PubMed PubMed Central Google Scholar
Cordero-Reyes AM, Gupte AA, Youker KA, Loebe M, Hsueh WA, Torre-Amione G, Taegtmeyer H, Hamilton DJ (2014) Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol 68:98–105. https://doi.org/10.1016/j.yjmcc.2013.12.029
Article CAS PubMed PubMed Central Google Scholar
Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guerin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit JF, Jouve B, Motreff P, Tron C, Labeque JN, Steg PG, Cottin Y, Range G, Clerc J, Claeys MJ, Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, Gilard M, Piot C, Colin P, De Poli F, Morice MC, Ider O, Dubois-Rande JL, Unterseeh T, Le Breton H, Beard T, Blanchard D, Grollier G, Malquarti V, Staat P, Sudre A, Elmer E, Hansson MJ, Bergerot C, Boussaha I, Jossan C, Derumeaux G, Mewton N, Ovize M (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031. https://doi.org/10.1056/NEJMoa1505489
Article CAS PubMed Google Scholar
Dirkx E, Gladka MM, Philippen LE, Armand AS, Kinet V, Leptidis S, El Azzouzi H, Salic K, Bourajjaj M, da Silva GJ, Olieslagers S, van der Nagel R, de Weger R, Bitsch N, Kisters N, Seyen S, Morikawa Y, Chanoine C, Heymans S, Volders PG, Thum T, Dimmeler S, Cserjesi P, Eschenhagen T, da Costa Martins PA, De Windt LJ (2013) Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 15:1282–1293. https://doi.org/10.1038/ncb2866
Article CAS PubMed Google Scholar
Fernandez-Caggiano M, Kamynina A, Francois AA, Prysyazhna O, Eykyn TR, Krasemann S, Crespo-Leiro MG, Vieites MG, Bianchi K, Morales V, Domenech N, Eaton P (2020) Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat Metab 2:1223–1231. https://doi.org/10.1038/s42255-020-00276-5
Article CAS PubMed PubMed Central Google Scholar
Galaxy Community (2022) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50:W345–W351. https://doi.org/10.1093/nar/gkac247
Garcia-Lunar I, Jorge I, Saiz J, Solanes N, Dantas AP, Rodriguez-Arias JJ, Ascaso M, Galan-Arriola C, Jimenez FR, Sandoval E, Nuche J, Moran-Garrido M, Camafeita E, Rigol M, Sanchez-Gonzalez J, Fuster V, Vazquez J, Barbas C, Ibanez B, Pereda D, Garcia-Alvarez A (2024) Metabolic changes contribute to maladaptive right ventricular hypertrophy in pulmonary hypertension beyond pressure overload: an integrative imaging and omics investigation. Basic Res Cardiol. https://doi.org/10.1007/s00395-024-01041-5
Gomez-Arroyo J, Mizuno S, Szczepanek K, Van Tassell B, Natarajan R, dos Remedios CG, Drake JI, Farkas L, Kraskauskas D, Wijesinghe DS, Chalfant CE, Bigbee J, Abbate A, Lesnefsky EJ, Bogaard HJ, Voelkel NF (2013) Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 6:136–144. https://doi.org/10.1161/CIRCHEARTFAILURE.111.966127
Article CAS PubMed Google Scholar
Grabowski P, Kustatscher G, Rappsilber J (2018) Epigenetic variability confounds transcriptome but not proteome profiling for coexpression-based gene function prediction. Mol Cell Proteom : MCP 17:2082–2090. https://doi.org/10.1074/mcp.RA118.000935
Article CAS PubMed Google Scholar
Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343. https://doi.org/10.1093/cvr/cvm005
Article CAS PubMed Google Scholar
Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovska D, Sviglerova J, Stengl M, Kolar M, Novotny J, Benes J, Cervenka L, Petrak J, Melenovsky V (2021) Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep 11:17136. https://doi.org/10.1038/s41598-021-96618-8
Article CAS PubMed PubMed Central Google Scholar
Heusch G (2022) Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 117:1. https://doi.org/10.1007/s00395-022-00909-8
Article PubMed PubMed Central Google Scholar
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F (2023) Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 67:102894. https://doi.org/10.1016/j.redox.2023.102894
Article CAS PubMed PubMed Central Google Scholar
Holzem KM, Vinnakota KC, Ravikumar VK, Madden EJ, Ewald GA, Dikranian K, Beard DA, Efimov IR (2016) Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J. 30:2698–2707. https://doi.org/10.1096/fj.201500118R
Article CAS PubMed PubMed Central Google Scholar
Hwang HV, Sandeep N, Nair RV, Hu DQ, Zhao M, Lan IS, Fajardo G, Matkovich SJ, Bernstein D, Reddy S (2021) Transcriptomic and functional analyses of mitochondrial dysfunction in pressure overload-induced right ventricular failure. J Am Heart Assoc 10:e017835. https://doi.org/10.1161/JAHA.120.017835
Article CAS PubMed PubMed Central Google Scholar
Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363. https://doi.org/10.1161/01.res.85.4.357
Article CAS PubMed Google Scholar
Kaludercic N, Arusei RJ, Di Lisa F (2023) Recent advances on the role of monoamine oxidases in cardiac pathophysiology. Basic Res Cardiol 118:41. https://doi.org/10.1007/s00395-023-01012-2
Article CAS PubMed PubMed Central Google Scholar
Karamanlidis G, Bautista-Hernandez V, Fynn-Thompson F, Del Nido P, Tian R (2011) Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail 4:707–713. https://doi.org/10.1161/CIRCHEARTFAILURE.111.961474
Article CAS PubMed PubMed Central Google Scholar
Knapp F, Niemann B, Li L, Molenda N, Kracht M, Schulz R, Rohrbach S (2020) Differential effects of right and left heart failure on skeletal muscle in rats. J Cachexia Sarcopenia Muscle 11:1830–1849. https://doi.org/10.1002/jcsm.12612
Article PubMed PubMed Central Google Scholar
Kuznetsov AV, Javadov S, Margreiter R, Hagenbuchner J, Ausserlechner MJ (2022) Analysis of mitochondrial function, structure, and intracellular organization in situ in cardiomyocytes and skeletal muscles. Int J Mol Sci 23(4):2252. https://doi.org/10.3390/ijms23042252
Article CAS PubMed PubMed Central Google Scholar
Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976. https://doi.org/10.1038/nprot.2008.61
Article CAS PubMed Google Scholar
Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED (2021) Cardiac energy metabolism in heart failure. Circ Res 128:1487–1513. https://doi.org/10.1161/CIRCRESAHA.121.318241
Article CAS PubMed PubMed Central Google Scholar
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009
Comments (0)