Intratumoral Injection of Large Surface Area Microparticle Taxanes in Carcinomas Increases Immune Effector Cell Concentrations, Checkpoint Expression, and Synergy with Checkpoint Inhibitors: A Review of Preclinical and Clinical Studies

van den Ende T, van den Boorn HG, Hoonhout NM, et al. Priming the tumor immune microenvironment with chemo(radio)therapy: a systematic review across tumor types. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188386. https://doi.org/10.1016/j.bbcan.2020.188386.

Article  CAS  PubMed  Google Scholar 

Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–86. https://doi.org/10.1158/2159-8290.CD-18-0367.

Article  PubMed  Google Scholar 

Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50. https://doi.org/10.1038/s41591-018-0014-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez AB, Peske JD, Woods AN, et al. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. Cell Rep. 2021;36(3):109422. https://doi.org/10.1016/j.celrep.2021.109422.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL Jr. Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol. 2018;200(2):432–42. https://doi.org/10.4049/jimmunol.1701269.

Article  CAS  PubMed  Google Scholar 

Mauldin IS, Mahmutovic A, Young SJ, Slingluff CL Jr. Multiplex immunofluorescence histology for immune cell infiltrates in melanoma-associated tertiary lymphoid structures. Methods Mol Biol. 2021;2265:573–87. https://doi.org/10.1007/978-1-0716-1205-7_40.

Article  CAS  PubMed  Google Scholar 

Goldberg EP, Hadba AR, Almond BA, Marotta JS. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol. 2002;54(2):159–80. https://doi.org/10.1211/0022357021778268.

Article  CAS  PubMed  Google Scholar 

Saito A, Kitayama J, Nagai R, Aizawa K. Anatomical targeting of anticancer drugs to solid tumors using specific administration routes: review. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15061664.

Article  PubMed  PubMed Central  Google Scholar 

Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging technologies for local cancer treatment. Adv Ther (Weinh). 2020;3(9):2000027. https://doi.org/10.1002/adtp.202000027.

Article  PubMed  Google Scholar 

Munoz NM, Williams M, Dixon K, et al. Influence of injection technique, drug formulation and tumor microenvironment on intratumoral immunotherapy delivery and efficacy. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2020-001800.

Article  PubMed  PubMed Central  Google Scholar 

Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164. https://doi.org/10.4172/2157-7439.1000164.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu W, Atkinson VG, Menzies AM. Intratumoural immunotherapies in oncology. Eur J Cancer. 2020;127:1–11. https://doi.org/10.1016/j.ejca.2019.12.007.

Article  CAS  PubMed  Google Scholar 

Subbotin V, Fiksel G. Modeling multi-needle injection into solid tumor. Am J Cancer Res. 2019;9(10):2209–15.

CAS  PubMed  PubMed Central  Google Scholar 

Baltezor M, Farthing J, Sittenauer J, et al. Taxane particles and their use. US Patent 9,814,685. 2017.

Maulhardt H, Verco S, Baltezor M, Marin A, diZerega G. Local administration of large surface area microparticle docetaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects: preclinical and clinical studies. Drug Deliv Transl Res. 2022. https://doi.org/10.1007/s13346-022-01226-2.

Article  PubMed  PubMed Central  Google Scholar 

Verco S, Maulhardt H, Baltezor M, et al. Local administration of submicron particle paclitaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects without local or systemic toxicity: preclinical and clinical studies. Drug Deliv Transl Res. 2021;11(5):1806–17. https://doi.org/10.1007/s13346-020-00868-4.

Article  CAS  PubMed  Google Scholar 

Baltezor M, Farthing J, Sittenauer J, et al. Methods for making compound particles. US Patent 9,918,957 B2. 2018.

Maulhardt HA, Marin AM, diZerega GS. Intratumoral submicron particle docetaxel inhibits syngeneic Renca renal cancer growth and increases CD4+, CD8+, and Treg levels in peripheral blood. Invest New Drugs. 2020. https://doi.org/10.1007/s10637-020-00922-5.

Article  PubMed  PubMed Central  Google Scholar 

Maulhardt HA, Hylle L, Frost MV, et al. Local injection of submicron particle docetaxel is associated with tumor eradication, reduced systemic toxicity and an immunologic response in uro-oncologic xenografts. Cancers. 2019;11(4):577. https://doi.org/10.3390/cancers11040577.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maulhardt H, Marin A, Hesseltine H, diZerega G. Submicron particle docetaxel intratumoral injection in combination with anti-mCTLA-4 into 4T1-Luc orthotopic implants reduces primary tumor and metastatic pulmonary lesions. Med Oncol. 2021;38(9):106. https://doi.org/10.1007/s12032-021-01555-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanchez-Correa B, Lopez-Sejas N, Duran E, et al. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol Immunother. 2019;68(5):861–70. https://doi.org/10.1007/s00262-019-02336-6.

Article  CAS  PubMed  Google Scholar 

Bottcher JP, Bonavita E, Chakravarty P, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022–1037.e1014. https://doi.org/10.1016/j.cell.2018.01.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fessenden TB, Duong E, Spranger S. A team effort: natural killer cells on the first leg of the tumor immunity relay race. J Immunother Cancer. 2018;6(1):67. https://doi.org/10.1186/s40425-018-0380-4.

Article  PubMed  PubMed Central  Google Scholar 

Choucair K, Duff JR, Cassidy CS, et al. Natural killer cells: a review of biology, therapeutic potential and challenges in treatment of solid tumors. Fut Oncol. 2019;15(26):3053–69. https://doi.org/10.2217/fon-2019-0116.

Article  CAS  Google Scholar 

Singh AK, Tripathi P, Cardell SL. Type II NKT cells: an elusive population with immunoregulatory properties. Front Immunol. 2018;9:1969. https://doi.org/10.3389/fimmu.2018.01969.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bae EA, Seo H, Kim IK, Jeon I, Kang CY. Roles of NKT cells in cancer immunotherapy. Arch Pharm Res. 2019;42(7):543–8. https://doi.org/10.1007/s12272-019-01139-8.

Article  CAS  PubMed  Google Scholar 

Terabe M, Berzofsky JA. Tissue-specific roles of NKT cells in tumor immunity. Front Immunol. 2018;9:1838. https://doi.org/10.3389/fimmu.2018.01838.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maulhardt HA, Marin AM, diZerega GS. Intratumoral treatment of melanoma tumors with large surface area microparticle paclitaxel and synergy with immune checkpoint inhibition. Int J Nanomedicine. 2024;19:689–97. https://doi.org/10.2147/IJN.S449975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma X, Ding Y, Qian J, Wan M, Chen X, Xu N. Comparison of efficacy and safety of first-line chemoimmunotherapy in advanced esophageal squamous cell carcinoma: a systematic review and network meta-analysis. J Clin Pharm Ther. 2023;2023:3836855. https://doi.org/10.1155/2023/3836855.

Article  CAS  Google Scholar 

Kates M, Mansour A, Lamm DL, et al. Phase 1/2 trial results of a large surface area microparticle docetaxel for the treatment of high-risk non-muscle invasive bladder cancer. J Urol. 2022;208(4):821–9. https://doi.org/10.1097/JU.0000000000002778.

Article  PubMed  Google Scholar 

Kates M, Mansour A, Lamm DL, et al. JU INSIGHT Phase 1/2 Trial results of a large surface area microparticle docetaxel for the treatment of high-risk non-muscle invasive bladder cancer. 2022. https://www.auanews.net/issues/articles/2022/october-2022-online-only/ju-insight-phase-1/2-trial-results-of-a-large-surface-area-microparticle-docetaxel-for-the-treatment-of-high-risk-nonmuscle-invasive-bladder-cancer. Accessed 15 October 2022.

Fu H, Zhu Y, Wang Y, et al. Identification and validation of stromal immunotype predict survival and benefit from adjuvant chemotherapy in patients with muscle invasive bladder cancer. Clin Cancer Res. 2018. https://doi.org/10.1158/1078-0432.CCR-17-2687.

Article  PubMed  PubMed Central  Google Scholar 

Sharma N, Lo S, Hendifar A, et al. Response of locally advanced pancreatic cancer to intratumoral injection of large surface area microparticle paclitaxel: initial report of safety and clinical outcome. Pancreas. 2023. https://doi.org/10.1097/mpa.0000000000002236.

Article  PubMed  Google Scholar 

Mucciolo G, Roux C, Scagliotti A, Brugiapaglia S, Novelli F, Cappello P. The dark side of immunotherapy: pancreatic cancer. Cancer Drug Resist. 2020;3(3):491–520. https://doi.org/10.20517/cdr.2020.13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonaventura P, Shekarian T, Alcazer V, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168. https://doi.org/10.3389/fimmu.2019.00168.

Comments (0)

No login
gif