Goto H, Yamakawa N, Komatsu H, Asakage M, Tsubota K, Ueda SI, Nemoto R, Umazume K, Usui Y, Mori H (2021) Clinico-epidemiological analysis of 1000 cases of orbital tumors. Jpn J Ophthalmol 65:704–723. https://doi.org/10.1007/s10384-021-00857-1
Sogabe Y, Ohshima K-i, Azumi A, Takahira M, Kase S, Tsuji H, Yoshikawa H, Nakamura T (2014) Location and frequency of lesions in patients with IgG4-related ophthalmic diseases. Graefes Arch Clin Exp Ophthalmol 252:531–538
Article CAS PubMed Google Scholar
Deshpande V, Zen Y, Chan JK, Yi EE, Sato Y, Yoshino T, Klöppel G, Heathcote JG, Khosroshahi A, Ferry JA (2012) Consensus statement on the pathology of IgG4-related disease. Mod Pathol 25:1181–1192
Andrew NH, Sladden N, Kearney DJ, Selva D (2015) An analysis of IgG4-related disease (IgG4-RD) among idiopathic orbital inflammations and benign lymphoid hyperplasias using two consensus-based diagnostic criteria for IgG4-RD. Br J Ophthalmol 99:376–381
Cleary ML, Chao J, Warnke R, Sklar J (1984) Immunoglobulin gene rearrangement as a diagnostic criterion of B-cell lymphoma. Proc Natl Acad Sci 81:593–597
Article CAS PubMed PubMed Central Google Scholar
Shimizu H, Usui Y, Wakita R, Aita Y, Tomita A, Tsubota K, Asakage M, Nezu N, Komatsu H, Umazume K, Sugimoto M, Goto H (2021) Differential Tissue Metabolic Signatures in IgG4-Related Ophthalmic Disease and Orbital Mucosa-Associated Lymphoid Tissue Lymphoma. Invest Ophthalmol Vis Sci 62:15. https://doi.org/10.1167/iovs.62.1.15
Article CAS PubMed PubMed Central Google Scholar
Tagami M, Nishio M, Katsuyama-Yoshikawa A, Misawa N, Sakai A, Haruna Y, Azumi A, Honda S (2023) Machine learning model with texture analysis for automatic classification of histopathological images of ocular adnexal mucosa-associated lymphoid tissue lymphoma of two different origins. Curr Eye Res 1–8. https://doi.org/10.1080/02713683.2023.2246696
Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629. https://doi.org/10.1007/s13244-018-0639-9
Fang Y, Wang W, Xie B, Sun Q, Wu L, Wang X, Huang T, Wang X, Cao Y (2023) Eva: exploring the limits of masked visual representation learning at scale. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 19358–19369. https://arxiv.org/abs/2211.07636
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S (2020) An image is worth 16x16 words: transformers for image recognition at scale. https://arxiv.org/abs/2010.11929
Tan M, Le Q (2019) EfficientNet: rethinking model scaling for convolutional neural networks. In: Kamalika C, Ruslan S (eds) Proceedings of the 36th International Conference on Machine Learning. PMLR, Proceedings of Machine Learning Research, pp. 6105–6114. https://arxiv.org/abs/1905.11946
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708. https://ieeexplore.ieee.org/document/8099726
Miyoshi H, Sato K, Kabeya Y, Yonezawa S, Nakano H, Takeuchi Y, Ozawa I, Higo S, Yanagida E, Yamada K (2020) Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma. Lab Invest 100:1300–1310
Article CAS PubMed Google Scholar
Cheuk W, Yuen HK, Chan JK (2007) Chronic sclerosing dacryoadenitis: part of the spectrum of IgG4-related Sclerosing disease? Am J Surg Pathol 31:643–645
Umehara H, Okazaki K, Masaki Y, Kawano M, Yamamoto M, Saeki T, Matsui S, Yoshino T, Nakamura S, Kawa S, Hamano H, Kamisawa T, Shimosegawa T, Shimatsu A, Nakamura S, Ito T, Notohara K, Sumida T, Tanaka Y, Mimori T, Chiba T, Mishima M, Hibi T, Tsubouchi H, Inui K, Ohara H (2012) Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod Rheumatol 22:21–30. https://doi.org/10.1007/s10165-011-0571-z
Article CAS PubMed Google Scholar
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. https://arxiv.org/abs/1512.03385
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556
Tagami M, Kasashima H, Kakehashi A, Yoshikawa A, Nishio M, Misawa N, Sakai A, Wanibuchi H, Yashiro M, Azumi A, Honda S (2024) Stromal area differences with epithelial-mesenchymal transition gene changes in conjunctival and orbital mucosa-associated lymphoid tissue lymphoma. Front Oncol 14:1277749. https://doi.org/10.3389/fonc.2024.1277749
Article PubMed PubMed Central Google Scholar
Swiderska-Chadaj Z, Hebeda KM, van den Brand M, Litjens G (2021) Artificial intelligence to detect MYC translocation in slides of diffuse large B-cell lymphoma. Virchows Arch 479:617–621
El Hussein S, Chen P, Medeiros LJ, Wistuba II, Jaffray D, Wu J, Khoury JD (2022) Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia. J Pathol 256:4–14
El Achi H, Khoury JD (2020) Artificial intelligence and digital microscopy applications in diagnostic hematopathology. Cancers (Basel) 12:797
Li D, Bledsoe JR, Zeng Y, Liu W, Hu Y, Bi K, Liang A, Li S (2020) A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Nat Commun 11:1–9
Sato Y, Notohara K, Kojima M, Takata K, Masaki Y, Yoshino T (2010) IgG4-related disease: historical overview and pathology of hematological disorders. Pathol Int 60:247–258
Article CAS PubMed Google Scholar
Bledsoe JR, Wallace ZS, Deshpande V, Richter JR, Klapman J, Cowan A, Stone JH, Ferry JA (2017) Atypical IgG4+ plasmacytic proliferations and lymphomas: characterization of 11 cases. Am J Clin Pathol 148:215–235
Article CAS PubMed Google Scholar
Bledsoe JR, Wallace ZS, Stone JH, Deshpande V, Ferry JA (2018) Lymphomas in IgG4-related disease: clinicopathologic features in a Western population. Virchows Arch 472:839–852
Article CAS PubMed Google Scholar
Li K-M, Xu M-H, Wu X, He W-M (2020) The expression of IgG and IgG4 in orbital MALT lymphoma: the similarities and differences of IgG4-related diseases. Onco Targets Ther 5755–5761. https://doi.org/10.2147/OTT.S242852
Jung SK, Lim J, Yang SW, Won YJ (2021) Nationwide trends in the incidence of orbital lymphoma from 1999 to 2016 in South Korea. Br J Ophthalmol 105:1341–1345. https://doi.org/10.1136/bjophthalmol-2020-316796
Olsen TG, Heegaard S (2019) Orbital lymphoma. Surv Ophthalmol 64:45–66. https://doi.org/10.1016/j.survophthal.2018.08.002
Comments (0)