Mulivor AW HHL (2002) Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 283(4):H1282–1291
Article CAS PubMed Google Scholar
Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, Smith LP, Cheng SS, Overdier KH, Thompson KR, Geraci MW, Douglas IS, Pearse DB, Tuder RM (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 18(8):1217–1223. https://doi.org/10.1038/nm.2843
Article CAS PubMed Google Scholar
Wiesinger A, Peters W, Chappell D, Kentrup D, Reuter S, Pavenstadt H, Oberleithner H, Kumpers P (2013) Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS ONE 8(11):e80905. https://doi.org/10.1371/journal.pone.0080905
Article PubMed PubMed Central Google Scholar
Drost CC, Unger A, Linke WA, Vink H, Kumpers P (2023) The dynamics of the endothelial glycocalyx: a rare snapshot by electron microscopy. Angiogenesis 26(4):487–491. https://doi.org/10.1007/s10456-023-09880-x
Article PubMed PubMed Central Google Scholar
Curry FE, Adamson RH (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40(4):828–839. https://doi.org/10.1007/s10439-011-0429-8
Article CAS PubMed Google Scholar
Salmon AH, Ferguson JK, Burford JL, Gevorgyan H, Nakano D, Harper SJ, Bates DO, Peti-Peterdi J (2012) Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 23(8):1339–1350. https://doi.org/10.1681/ASN.2012010017
Article CAS PubMed PubMed Central Google Scholar
Alphonsus CS, Rodseth RN (2014) The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69(7):777–784. https://doi.org/10.1111/anae.12661
Article CAS PubMed Google Scholar
Padberg JS, Wiesinger A, di Marco GS, Reuter S, Grabner A, Kentrup D, Lukasz A, Oberleithner H, Pavenstadt H, Brand M, Kumpers P (2014) Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234(2):335–343. https://doi.org/10.1016/j.atherosclerosis.2014.03.016
Article CAS PubMed Google Scholar
Uchimido R, Schmidt EP, Shapiro NI (2019) The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 23(1):16. https://doi.org/10.1186/s13054-018-2292-6
Article PubMed PubMed Central Google Scholar
Drost CC, Rovas A, Kumpers P (2021) Protection and rebuilding of the endothelial glycocalyx in sepsis - science or fiction? Matrix Biol Plus 12:100091. https://doi.org/10.1016/j.mbplus.2021.100091
Article CAS PubMed PubMed Central Google Scholar
Drost CC, Rovas A, Osiaevi I, Rauen M, van der Vlag J, Buijsers B, Salmenov R, Lukasz A, Pavenstadt H, Linke WA, Kumpers P (2022) Heparanase is a putative mediator of endothelial glycocalyx damage in COVID-19 - a proof-of-Concept Study. Front Immunol 13:916512. https://doi.org/10.3389/fimmu.2022.916512
Article CAS PubMed PubMed Central Google Scholar
Drost CC, Rovas A, Kusche-Vihrog K, Van Slyke P, Kim H, Hoang VC, Maynes JT, Wennmann DO, Pavenstadt H, Linke W, Lukasz A, Hesse B, Kumpers P (2019) Tie2 activation promotes Protection and reconstitution of the endothelial glycocalyx in human Sepsis. Thromb Haemost 119(11):1827–1838. https://doi.org/10.1055/s-0039-1695768
Lei J, Xiang P, Zeng S, Chen L, Zhang L, Yuan Z, Zhang J, Wang T, Yu R, Zhang W, Ibrahim II, Ma L, Yu C (2021) Tetramethylpyrazine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration via TLR4/NF-kappaB/HPSE1 signaling pathway during inflammation. Front Pharmacol 12:791841. https://doi.org/10.3389/fphar.2021.791841
Article CAS PubMed Google Scholar
Hesse B, Rovas A, Buscher K, Kusche-Vihrog K, Brand M, Di Marco GS, Kielstein JT, Pavenstadt H, Linke WA, Nofer JR, Kumpers P, Lukasz A (2020) Symmetric dimethylarginine in dysfunctional high-density lipoprotein mediates endothelial glycocalyx breakdown in chronic kidney disease. Kidney Int 97(3):502–515. https://doi.org/10.1016/j.kint.2019.10.017
Article CAS PubMed Google Scholar
Rovas A, Buscher K, Osiaevi I, Drost CC, Sackarnd J, Tepasse PR, Fobker M, Kuhn J, Braune S, Gobel U, Tholking G, Groschel A, Rossaint J, Vink H, Lukasz A, Pavenstadt H, Kumpers P (2022) Microvascular and proteomic signatures overlap in COVID-19 and bacterial sepsis: the MICROCODE study. Angiogenesis 25(4):503–515. https://doi.org/10.1007/s10456-022-09843-8
Article CAS PubMed PubMed Central Google Scholar
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The Third International Consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287
Article CAS PubMed PubMed Central Google Scholar
Rovas A, Sackarnd J, Rossaint J, Kampmeier S, Pavenstadt H, Vink H, Kumpers P (2021) Identification of novel sublingual parameters to analyze and diagnose microvascular dysfunction in sepsis: the NOSTRADAMUS study. Crit Care 25(1):112. https://doi.org/10.1186/s13054-021-03520-w
Article PubMed PubMed Central Google Scholar
Rovas A, Lukasz AH, Vink H, Urban M, Sackarnd J, Pavenstadt H, Kumpers P (2018) Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit - the GlycoNurse study. Scand J Trauma Resusc Emerg Med 26(1):16. https://doi.org/10.1186/s13049-018-0483-4
Article PubMed PubMed Central Google Scholar
Rovas A, Seidel LM, Vink H, Pohlkotter T, Pavenstadt H, Ertmer C, Hessler M, Kumpers P (2019) Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit Care 23(1):260. https://doi.org/10.1186/s13054-019-2542-2
Article PubMed PubMed Central Google Scholar
Diez-Silva M, Dao M, Han J, Lim CT, Suresh S (2010) Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bull 35(5):382–388. https://doi.org/10.1557/mrs2010.571
Article CAS PubMed PubMed Central Google Scholar
Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson AC, Lindstedt P, Stenvang J, Gullberg M, Fredriksson S (2014) Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9(4):e95192. https://doi.org/10.1371/journal.pone.0095192
Article CAS PubMed PubMed Central Google Scholar
Filbin MR, Mehta A, Schneider AM, Kays KR, Guess JR, Gentili M, Fenyves BG, Charland NC, Gonye ALK, Gushterova I, Khanna HK, LaSalle TJ, Lavin-Parsons KM, Lilley BM, Lodenstein CL, Manakongtreecheep K, Margolin JD, McKaig BN, Rojas-Lopez M, Russo BC, Sharma N, Tantivit J, Thomas MF, Gerszten RE, Heimberg GS, Hoover PJ, Lieb DJ, Lin B, Ngo D, Pelka K, Reyes M, Smillie CS, Waghray A, Wood TE, Zajac AS, Jennings LL, Grundberg I, Bhattacharyya RP, Parry BA, Villani AC, Sade-Feldman M, Hacohen N, Goldberg MB (2021) Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep Med 2(5):100287. https://doi.org/10.1016/j.xcrm.2021.100287
Article CAS PubMed PubMed Central Google Scholar
Schmidt EP, Overdier KH, Sun X, Lin L, Liu X, Yang Y, Ammons LA, Hiller TD, Suflita MA, Yu Y, Chen Y, Zhang F, Cothren Burlew C, Edelstein CL, Douglas IS, Linhardt RJ (2016) Urinary glycosaminoglycans predict outcomes in septic shock and Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 194(4):439–449. https://doi.org/10.1164/rccm.201511-2281OC
Article CAS PubMed PubMed Central Google Scholar
Rovas A, Neumann JK, Drost CC, Vollenberg R, Tholking G, Fobker M, Witzenrath M, Kumpers P, Agamotto Study G, Capnetz Study G (2023) Analysis of urinary glycosaminoglycans to Predict Outcome in COVID-19 and Community-Acquired Pneumonia-A Proof-of-Concept Study. J Clin Med 12(16). https://doi.org/10.3390/jcm12165269
Lukasz A, Hillgruber C, Oberleithner H, Kusche-Vihrog K, Pavenstadt H, Rovas A, Hesse B, Goerge T, Kumpers P (2017) Endothelial glycocalyx breakdown is mediated by angiopoietin-2. Cardiovasc Res 113(6):671–680. https://doi.org/10.1093/cvr/cvx023
Article CAS PubMed Google Scholar
R_Core_Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL http://www.R-project.org/
Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. https://doi.org/10.2202/1544-6115.1027
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007
Article CAS PubMed PubMed Central Google Scholar
Benjamini Y, Hochberg Y (1995) Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Blighe K (2021) EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. https://github.com/kevinblighe/EnhancedVolcano
Montgomery A, Tam F, Gursche C, Cheneval C, Besler K, Enns W, Manku S, Rey K, Hanson PJ, Rose-John S, McManus BM, Choy JC (2021) Overlapping and distinct biological effects of IL-6 classic and trans-signaling in vascular endothelial cells. Am J Physiol Cell Physiol 320(4):C554–C565. https://doi.org/10.1152/ajpcell.00323.2020
Article CAS PubMed Google Scholar
Zegeye MM, Lindkvist M, Falker K, Kumawat AK, Paramel G, Grenegard M, Sirsjo A, Ljungberg LU (2018) Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal 16(1):55.
Comments (0)